Reconstructing the Late Cenozoic Retreat of the Proto-Paratethys Sea in the SW Tajik Basin Using Integrated ASTER Mapping and Field Validation
Main Article Content
Abstract
The Tajik Basin holds one of Central Asia’s most complete geological archives of how the Proto-Paratethys Sea retreated and gave way to continental landscapes during the Cenozoic. Yet the spatial continuity of these Paleogene–Neogene formations remains only partly understood. In this study, we combined satellite-based spectral analysis with detailed fieldwork to better map and interpret the Ganjina–Khuroson area in southwestern Tajikistan. Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, we applied tailored band-ratio composites (R:2/5, G:3N, B:5/6 and R:2/1, G:3N, B:5/7) to distinguish marine carbonates from continental sandstones and clays. The Maximum Likelihood Classification achieved an overall accuracy of 90.72% and a Kappa value of 0.87, demonstrating high reliability. Field spectroscopy and geological verification confirmed excellent agreement with observed lithologies. The results reveal a clear shift from fossil-rich marine limestones to oxidized continental deposits, marking the final regression of the Proto-Paratethys Sea. This integrated approach shows how multispectral data, when validated in the field, can illuminate the history of marine withdrawal and sedimentary transformation across the Tajik Basin.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting a manuscript to Evidence in Earth Science, the author(s) agree to the following terms:
-
Copyright Ownership:
Authors retain copyright to their submitted work. Upon acceptance for publication, the authors grant Evidence in Earth Science a license to publish the work under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). -
Open Access License (CC-BY 4.0):
The articles published in Evidence in Earth Science are open access and distributed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). This means that:- Users are free to share, copy, modify, distribute, and display the work, including for commercial purposes, as long as they provide appropriate attribution to the original author(s).
- The work can be adapted or used in derivative works, but proper credit must be given.
For more detailed information on the licensing terms, please refer to the Creative Commons Attribution 4.0 International License (CC-BY 4.0).
References
Abdul-Qadir, A. M., 2014, Supervised classification for lithologic discrimination in Shaikh Ibrahim Area, NW Iraq using Landsat images: Arabian Journal for Science and Engineering, v. 39, no. 1, p. 437–451, https://doi.org/10.1007/s13369-013-0911-8. DOI: https://doi.org/10.1007/s13369-013-0911-8
Abrams, M., and Yamaguchi, Y., 2019, Twenty years of ASTER contributions to lithologic mapping and mineral exploration: Remote Sensing, v. 11, no. 11, p. 1394, https://doi.org/10.3390/rs11111394. DOI: https://doi.org/10.3390/rs11111394
Assiri, A., Alsaleh, A., and Mousa, H., 2008, Exploration of hydrothermal alteration zones using ASTER imagery: A case study of Nuqrah Area, Saudi-Arabia: Asian Journal of Earth Sciences, v. 1, no. 2, p. 77–82. DOI: https://doi.org/10.3923/ajes.2008.77.82
Ayombekov, Q., Chen, X., Gulayozov, M., Liu, T., Mamadbekov, F., Abdullaev, F., Yogibekov, D., Liu, H., Kabutov, Z., and Shobairi, S. O. R., 2025, Study of the impact of climate change on the runoff of the Varzob River Basin in Tajikistan: Evidence in Earth Science, v. 1, no. 02, p. 93–124, https://doi.org/10.63221/eies.v1i02.93-124. DOI: https://doi.org/10.63221/eies.v1i02.93-124
Bahrami, Y., Hassani, H., and Maghsoudi, A., 2018, Investigating the capabilities of multispectral remote sensors data to map alteration zones in the Abhar area, NW Iran: Geosystem Engineering, p. 1–13, https://doi.org/10.1080/12269328.2018.1557083. DOI: https://doi.org/10.1080/12269328.2018.1557083
Bosboom, R. E., Abels, H. A., Hoorn, C., van den Berg, B. C. J., Guo, Z., and Dupont-Nivet, G., 2014, Aridification in continental Asia after the Middle Eocene Climatic Optimum (MECO): Earth and Planetary Science Letters, v. 389, p. 34–42, https://doi.org/10.1016/j.epsl.2013.12.014. DOI: https://doi.org/10.1016/j.epsl.2013.12.014
Bosboom, R. E., Dupont-Nivet, G., Houben, A. J. P., Brinkhuis, H., Villa, G., Mandic, O., Stoica, M., Zachariasse, W. J., Guo, Z., and Li, C., 2014, Timing, cause and impact of the late Eocene–early Oligocene onset of Asian aridification: Nature Geoscience, v. 7, no. 1, p. 1–6, https://doi.org/10.1038/ngeo1935. DOI: https://doi.org/10.1038/ngeo1935
Brookfield, M. E., and Hashmat, A., 2001, The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan): Earth-Science Reviews, v. 55, no. 1-2, p. 41–71, https://doi.org/10.1016/S0012-8252(01)00036-8. DOI: https://doi.org/10.1016/S0012-8252(01)00036-8
Burtman, V. S., and Molnar, P. H., 1993, Geological and geophysical evidence for deep subduction of continental crust beneath the Pamir: Geological Society of America, https://doi.org/10.1130/SPE281-p1. DOI: https://doi.org/10.1130/SPE281-p1
Burchette, T. P., and Wright, V. P., 1992, Carbonate ramp depositional systems: Sedimentary Geology, v. 79, no. 1-4, p. 3–57. DOI: https://doi.org/10.1016/0037-0738(92)90003-A
Carrapa, B., DeCelles, P. G., Wang, X., Clementz, M. T., Mancin, N., Stoica, M., Kraatz, B., Meng, J., Wang, F., and Wang, H., 2015, Tectono-climatic implications of Eocene Paratethys regression in the Tajik basin of central Asia: Earth and Planetary Science Letters, v. 424, p. 168–178, https://doi.org/10.1016/j.epsl.2015.05.034. DOI: https://doi.org/10.1016/j.epsl.2015.05.034
Chapman, J. B., Carrapa, B., DeCelles, P. G., Worthington, J., Mancin, N., Cobianchi, M., Stoica, M., Wang, X., Gadoev, M., and Oimahmadov, I., 2019, The Tajik Basin: A composite record of sedimentary basin evolution in response to tectonics in the Pamir: Basin Research, v. 31, no. 6, p. 1035–1058, https://doi.org/10.1111/bre.12381. DOI: https://doi.org/10.1111/bre.12381
Chen, J., Zhu, Q., Zhao, W., Sun, Z., Zhang, C., Mao, Z., and Zhao, Q., 2016, Lithological mapping using ASTER and magnetic data: A case study from Zhalute area, China: in Proceedings of the 2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), p. 1–5, https://doi.org/10.1109/WHISPERS.2016.8071803. DOI: https://doi.org/10.1109/WHISPERS.2016.8071803
Corrie, R., Ninomiya, Y., and Aitchison, J., 2011, Applying ASTER spectral indices for geological mapping and mineral identification on the Tibetan Plateau: Geosphere, v. 7, no. 1, p. 276–289, https://doi.org/10.1130/GES00630.1. DOI: https://doi.org/10.1130/GES00630.1
Crosta, A. P., 1989, Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in Greenstone belt terrain: in Proceedings of the Seventh Thematic Conference on Remote Sensing for Exploration Geology, Calgary, p. 1173–1187.
Ding, C., Liu, X., Liu, W., Liu, M., and Li, Y., 2014, Mafic-ultramafic and quartz-rich rock indices deduced from ASTER thermal infrared data using a linear approximation to the Planck function: Ore Geology Reviews, v. 60, p. 161–173, https://doi.org/10.1016/j.oregeorev.2014.01.005. DOI: https://doi.org/10.1016/j.oregeorev.2014.01.005
Flügel, E., 2010, Microfacies of Carbonate Rocks: Analysis, Interpretation and Application, 2nd ed.: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-03796-2
Gad, S., and Kusky, T., 2007, ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt: Gondwana Research, v. 11, no. 3, p. 326–335, https://doi.org/10.1016/j.gr.2006.02.010. DOI: https://doi.org/10.1016/j.gr.2006.02.010
Gomez, C., Delacourt, C., Allemand, P., Ledru, P., and Wackerle, R., 2005, Using ASTER remote sensing data set for geological mapping in Namibia: Physics and Chemistry of the Earth, Parts A/B/C, v. 30, no. 1-3, p. 97–108, https://doi.org/10.1016/j.pce.2004.08.042. DOI: https://doi.org/10.1016/j.pce.2004.08.042
Kavak, K., 2005, Recognition of gypsum geohorizons in the Sivas Basin (Turkey) using ASTER and Landsat ETM+ images: International Journal of Remote Sensing, v. 26, no. 20, p. 4583–4596, https://doi.org/10.1080/01431160500185607. DOI: https://doi.org/10.1080/01431160500185607
Kaya, M. Y., Dupont-Nivet, G., Proust, J. N., Roperch, P., Bougeois, L., Meijer, N., Frieling, J., Fioroni, C., Özkan Altıner, S., and Vandenberghe, J., 2019, Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins): Role of intensified tectonic activity at ca. 41 Ma: Basin Research, v. 31, no. 3, p. 461–486, https://doi.org/10.1111/bre.12330. DOI: https://doi.org/10.1111/bre.12330
Leith, W., and Alvarez, W., 1985, Structure of the Vakhsh fold-and-thrust belt, Tadjik SSR: Geologic mapping on a Landsat image base: Geological Society of America Bulletin, v. 96, no. 7, p. 875–885, https://doi.org/10.1130/0016-7606(1985)96<875:SOTVFB>2.0.CO;2. DOI: https://doi.org/10.1130/0016-7606(1985)96<875:SOTVFB>2.0.CO;2
Ma, Q., and Tong, Q., 2025, Study on reservoir characteristic differences between the Late Triassic Yanchang Formation and Early Jurassic Yan'an Formation in Ordos Basin: A case study from Zhenbei Oilfield in southwestern margin: Evidence in Earth Science, v. 1, no. 01, p. 73–92, https://doi.org/10.63221/eies.v1i01.73-92. DOI: https://doi.org/10.63221/eies.v1i01.73-92
Mao, S., and Norris, G., 1988, Late Cretaceous–early Tertiary Dinoflagellates and Acritarchs from the Kashi Area, Tarim Basin, Xinjiang Province, China: Life Sciences Miscellaneous Publications, Royal Ontario Museum. DOI: https://doi.org/10.5962/bhl.title.52243
Markovski, A. P., 1959, Geology of USSR, Vol. 45: The Tajik Soviet Union, Part 1: Ministry of Geology and Conservation of the USSR.
Nikolaev, V., 2002, Afghan-Tajik depression: Architecture of sedimentary cover and evolution: Russian Journal of Earth Sciences, v. 4, no. 6, p. 405–420. DOI: https://doi.org/10.2205/2002ES000106
Nikonov, A., 1972, To the substantiation of stratigraphy of upper plated and Quarterly deposits of Afghan-Tajik Depression: Bulletin of the Quaternary Commission, v. 39, p. 45–52.
Rajendran, S., and Nasir, S., 2014, ASTER spectral sensitivity of carbonate rocks: Study in Sultanate of Oman: Advances in Space Research, v. 53, no. 4, p. 656–673, https://doi.org/10.1016/j.asr.2013.11.047. DOI: https://doi.org/10.1016/j.asr.2013.11.047
Rajendran, S., Nasir, S., El-Ghali, M., Alzebdah, K., Al-Rajhi, A. S., and Al-Battashi, M., 2018, Spectral signature characterization and remote mapping of Oman exotic limestones for industrial rock resource assessment: Geosciences, v. 8, no. 4, p. 145, https://doi.org/10.3390/geosciences8040145. DOI: https://doi.org/10.3390/geosciences8040145
Rockwell, B. W., and Hofstra, A. H., 2008, Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas: Geosphere, v. 4, no. 1, p. 218–246, https://doi.org/10.1130/GES00126.1. DOI: https://doi.org/10.1130/GES00126.1
Ryerson, R. A., and Rencz, A. N., eds., 1999, Manual of Remote Sensing, Remote Sensing for the Earth Sciences, Vol. 3: John Wiley & Sons.
Sabins, F. F., 1987, Remote Sensing: Principles and Interpretation, 2nd ed.: W. H. Freeman and Company. DOI: https://doi.org/10.1080/10106048709354087
San, B., Sumer, E., and Gurcay, B., 2004, Comparison of band ratioing and spectral indices methods for detecting alunite and kaolinite minerals using ASTER data in Biga region, Turkey: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 35, no. B7, p. 621–625.
Serkan Öztan, N., and Lütfi Süzen, M., 2011, Mapping evaporate minerals by ASTER: International Journal of Remote Sensing, v. 32, no. 6, p. 1651–1673, https://doi.org/10.1080/01431160903586799. DOI: https://doi.org/10.1080/01431160903586799
Son, Y.-S., Lee, K., and Lee, S., 2022, Application of ASTER data for differentiating carbonate minerals: Distinguishing magnesite, dolomite, and calcite using ASTER SWIR data: Remote Sensing, v. 14, no. 1, p. 181, https://doi.org/10.3390/rs14010181. DOI: https://doi.org/10.3390/rs14010181
Wahi, M., Taj-Eddine, K., and Laftouhi, N., 2013, ASTER VNIR & SWIR band enhancement for lithological mapping—a case study of the Azegour Area (Western High Atlas, Morocco): International Journal of Engineering Research & Technology, v. 2, no. 12, p. 2278–0181.
Yamaguchi, Y., and Naito, C., 2003, Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands: International Journal of Remote Sensing, v. 24, no. 22, p. 4311–4323, https://doi.org/10.1080/01431160110070320. DOI: https://doi.org/10.1080/01431160110070320
Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., and Pniel, M., 1998, Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER): IEEE Transactions on Geoscience and Remote Sensing, v. 36, no. 4, p. 1062–1071. DOI: https://doi.org/10.1109/36.700991
Zhang, X., Pazner, M., and Duke, N., 2007, Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California): ISPRS Journal of Photogrammetry and Remote Sensing, v. 62, no. 4, p. 271–282, https://doi.org/10.1016/j.isprsjprs.2007.04.004. DOI: https://doi.org/10.1016/j.isprsjprs.2007.04.004
Zhou, G., Wang, H., Sun, Y., Shao, Y., and Yue, T., 2019, Lithologic classification using multilevel spectral characteristics: Journal of Applied Remote Sensing, v. 13, no. 1, p. 016513, https://doi.org/10.1117/1.JRS.13.016513. DOI: https://doi.org/10.1117/1.JRS.13.016513