Research Progress on Estimation Methods of Forest Evapotranspiration Based on Bibliometrics
Main Article Content
Abstract
Forest evapotranspiration (ET), a core process of water vapor exchange between forest ecosystems and the atmosphere, is crucial for global carbon and water cycles and ecosystem stability. However, its high-precision estimation faces challenges arising from complex forest structures and multi-factor driving mechanisms. Based on bibliometrics, this study visually analyzed 1,427 relevant papers from the Web of Science Core Collection (2005-2025) to summarize research status, hotspots and frontiers. Results show continuous growth in publications over two decades, peaking during 2017-2022. Journal co-occurrence reveals that Agricultural and Forest Meteorology ranks first, contributing 212 papers and 10,438 total citations with an average of 49.24 cites per article. The Chinese Academy of Sciences, University of CAS and USDA form a close collaboration network led by 279 core authors. Hotspots concentrate on eddy covariance (460 occurrences), remote sensing inversion (134) and machine learning (124, rapidly rising since 2017). Eddy covariance remains the “gold standard”; remote sensing breaks spatiotemporal limits by integrating multi-source data; machine learning, exhibiting the greatest advances, improves accuracy by 45% in complex environments (burst intensity 17.91 since 2017), promoting hybrid “physical mechanism + data-driven” models. Research evolved through three stages: traditional observation dominance (2005-2010), physical model optimization (2010-2016), and intelligent algorithm innovation (2017-present), with applications spanning ecological assessment and water resource management.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
By submitting a manuscript to Evidence in Earth Science, the author(s) agree to the following terms:
-
Copyright Ownership:
Authors retain copyright to their submitted work. Upon acceptance for publication, the authors grant Evidence in Earth Science a license to publish the work under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). -
Open Access License (CC-BY 4.0):
The articles published in Evidence in Earth Science are open access and distributed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). This means that:- Users are free to share, copy, modify, distribute, and display the work, including for commercial purposes, as long as they provide appropriate attribution to the original author(s).
- The work can be adapted or used in derivative works, but proper credit must be given.
For more detailed information on the licensing terms, please refer to the Creative Commons Attribution 4.0 International License (CC-BY 4.0).
References
Abiodun, O.O., Guan, H., Post, V.E.A., and Batelaan, O. 2018. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales. Hydrology and Earth System Sciences 22(5): 2775–2794. https://doi.org/10.5194/hess-22-2775-2018.
Ai, Z., Wang, Q., Yang, Y., Manevski, K., Zhao, X., and Eer, D. 2017. Estimation of land-surface evaporation at four forest sites across Japan with the new nonlinear complementary method. Sci Rep 7(1): 17793. https://doi.org/10.1038/s41598-017-17473-0.
Amani, S., and Shafizadeh-Moghadam, H. 2023. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agricultural Water Management 284: 108324.https://doi.org/10.1016/j.agwat.2023.108324
Baldocchi, D., Dralle, D., Jiang, C., and Ryu, Y. 2019. How Much Water is Evaporated Across California?: A Multi-Year Assessment Using a Biophysical Model Forced with Satellite Remote Sensing Data. Water Resources Research 55(4): 2722–2741. https://doi.org/10.1029/2018WR023884.
Brümmer, C., Black, T.A., Jassal, R.S., Grant, N.J., Spittlehouse, D.L., Chen, B., Nesic, Z., Amiro, B.D., Arain, M.A., Barr, A.G., Bourque, C.P.-A., Coursolle, C., Dunn, A.L., Flanagan, L.B., Humphreys, E.R., Lafleur, P.M., Margolis, H.A., McCaughey, J.H., and Wofsy, S.C. 2012. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agricultural and Forest Meteorology 153: 14–30. https://doi.org/10.1016/j.agrformet.2011.04.008
Chen, C. 2004. Searching for intellectual turning points: progressive knowledge domain visualization. Proceedings of the National Academy of Sciences of the United States of America 101(suppl_1): 5303–5310. https://doi.org/10.1073/pnas.0307513100
Chen, C., and Song, M. 2019. Visualizing a field of research: A methodology of systematic scientometric reviews. PLOS ONE 14(10): e0223994.https://doi.org/10.1371/journal.pone.0223994.
Chen, Weijun. 2001. A comparative study of bibliometrics and content analysis. Intelligence Science (8): 884–886.
Chen, X., Yu, S., Zhang, H., Li, F., Liang, C., and Wang, Z. 2023. Estimating the Actual Evapotranspiration Using Remote Sensing and SEBAL Model in an Arid Environment of Northwest China. Water 15(8): 1555. https://doi.org/10.3390/w15081555.
Chen, Yue, Chen, Chaomei, Liu, Zeyuan, Hu, Zhigang, and Wang, Xianwen. 2015. Methodological functions of CiteSpace knowledge graph. Research in Science 33(2): 242–253. https://doi.org/10.16192/j.cnki.1003-2053.2015.02.009.
Chen, Z., Wang, W., Cescatti, A., and Forzieri, G. 2022. Climate-driven vegetation greening further reduces water availability in drylands. Global Change Biology 29(6): 1628–1647. https://doi.org/10.1111/gcb.16561.
Cheng, P., Tang, H., Dong, Y., Liu, K., Jiang, P., and Liu, Y. 2021. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. International Journal of Environmental Research and Public Health 18(24): 13065. https://doi.org/10.3390/ijerph182413065.
Chia, M.Y., Huang, Y.F., Koo, C.H., and Fung, K.F. 2020. Recent Advances in Evapotranspiration Estimation Using Artificial Intelligence Approaches with a Focus on Hybridization Techniques—A Review. Agronomy 10(1): 101. https://doi.org/10.3390/agronomy10010101.
Dolman, A.J., Moors, E.J., Grunwald, T., Berbigier, P., and Bernhofer, C. 2003. Factors Controlling Forest Atmosphere Exchange of Water, Energy, and Carbon. In Fluxes of Carbon, Water and Energy of European Forests. Edited by R. Valentini. Springer, Berlin, Heidelberg. pp. 207–223. https://doi.org/10.1007/978-3-662-05171-9_10.
Du, Jiaqiang, Xiong, Shanshan, Liu, Chengcheng, Guo, Yang, Shu, Jianmin, and Zhang, Linbo. 2013. Comparison of the applicability of several reference crop evapotranspiration calculation methods in the upper Yellow River. Arid Zone Geography 36(5): 831–840. https://doi.org/10.13826/j.cnki.cn65-1103/x.2013.05.018.
Fan, R., Sun, M., Zhu, X., and Wang, Q. 2022. Eddy covariance measurement-based differences in annual evapotranspiration between forests and grasslands in China. Frontiers in Plant Science 13. doi:10.3389/fpls.2022.1030929.
Feng, Jingze and Wang, Zhongjing. 2012. Review of the progress of remote sensing evapotranspiration modeling. Journal of Water Resources 43(8): 914–925. https://doi.org/10.13243/j.cnki.slxb.2012.08.001.
Feng, Kepeng, Tian, Juncang, and Hong, Yang. 2019. Self-searching optimal nearest neighbor algorithm for estimating potential evapotranspiration in limited meteorological data area. Journal of Agricultural Engineering 35(20): 76–83.
Feng, Q., Shen, J., Yang, F., Liang, S., Liu, J., Kuang, X., Wang, D., and Zeng, Z. 2023. Long-term gridded land evapotranspiration reconstruction using Deep Forest with high generalizability. Scientific Data 10(1). https://doi.org/10.1038/s41597-023-02822-8.
Fisher, J.B., DeBiase, T.A., Qi, Y., Xu, M., and Goldstein, A.H. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling & Software 20(6): 783–796. https://doi.org/10.1016/j.envsoft.2004.04.009.
Foltýnová, L., Fischer, M., and McGloin, R.P. 2019. Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling. Theoretical and Applied Climatology 139(1–2): 677–688.https://doi.org/10.1007/s00704-019-02975-w.
Fu, J., Wang, W., Shao, Q., Xing, W., Cao, M., Wei, J., Chen, Z., and Nie, W. 2022. Improved global evapotranspiration estimates using proportionality hypothesis-based water balance constraints. Remote Sensing of Environment 279: 113140. https://doi.org/10.1016/j.rse.2022.113140.
Gaumont-Guay, D., Black, T.A., Griffis, T.J., Barr, A.G., Jassal, R.S., and Nesic, Z. 2006. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agricultural and Forest Meteorology 140(1–4): 220–235. https://doi.org/10.1016/j.agrformet.2006.08.003.
Ge, Peng, Zhou, Mei, Bao, Hu, and Zhao, Pengwu. 2017. Progress of research on methods for determining evapotranspiration water consumption of forest vegetation. Inner Mongolia Forestry Survey and Design 40(3): 101–104. https://doi.org/10.13387/j.cnki.nmld.2017.03.076.
Giardina, F., Gentine, P., Konings, A.G., Seneviratne, S.I., and Stocker, B.D. 2023. Diagnosing evapotranspiration responses to water deficit across biomes using deep learning. New Phytologist 240(3): 968–983. https://doi.org/10.1111/nph.19197.
Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., Bernhofer, C., Bonnefond, J.M., Brunet, Y., Carrara, A., Clement, R., Dellwik, E., Elbers, J., Eugster, W., Fuhrer, J., Granier, A., Grünwald, T., Heinesch, B., Janssens, I.A., Knohl, A., Koeble, R., Laurila, T., Longdoz, B., Manca, G., Marek, M., Markkanen, T., Mateus, J., Matteucci, G., Mauder, M., Migliavacca, M., Minerbi, S., Moncrieff, J., Montagnani, L., Moors, E., Ourcival, J.-M., Papale, D., Pereira, J., Pilegaard, K., Pita, G., Rambal, S., Rebmann, C., Rodrigues, A., Rotenberg, E., Sanz, M.J., Sedlak, P., Seufert, G., Siebicke, L., Soussana, J.F., Valentini, R., Vesala, T., Verbeeck, H., and Yakir, D. 2008. Quality control of CarboEurope flux data – Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems. Biogeosciences 5(2): 433–450. https://doi.org/10.5194/bg-5-433-2008.
Gokool, S., Kunz, R., Clulow, A., and Toucher, M. 2024. Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation. Remote Sensing 16(15): 2726. https://doi.org/10.3390/rs16152726.
Goulden, M., and Fellows, A. 2011. Does Thinning Improve the Soil Water Balance and Vegetation Health of Southern Californian Forest. Available from https://www.semanticscholar.org/paper/Does-Thinning-Improve-the-Soil-Water-Balance-and-of-Goulden-Fellows/c9b1526f4c58969b941fee285cd8c5bf39134cba [accessed 22 May 2025].
Granata, F. 2019. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agricultural Water Management 217: 303–315. https://doi.org/10.1016/j.agwat.2019.03.015.
Hadiwijaya, B., Isabelle, P.-E., Nadeau, D.F., and Pepin, S. 2021. Can a physically-based land surface model accurately represent evapotranspiration partitioning? A case study in a humid boreal forest. Agricultural and Forest Meteorology 304–305: 108410. https://doi.org/10.1016/j.agrformet.2021.108410.
Heiss, J.W., Michael, H.A., and Puleo, J. 2020. Groundwater–surface water exchange in the intertidal zone detected by hydrologic and coastal oceanographic measurements. Hydrological Processes 34(17): 3718–3721. https://doi.org/10.1002/hyp.13825.
Hicks, D., and Melkers, J. 2013. Chapter 11: Bibliometrics as a tool for research evaluation. In Handbook on the Theory and Practice of Program Evaluation, Cheltenham, UK: Edward Elgar Publishing. available from: < https://doi.org/10.4337/9780857932402.00019> [Accessed 17 August 2025]
Hiller, R., Zeeman, M.J., and Eugster, W. 2008. Eddy-Covariance Flux Measurements in the Complex Terrain of an Alpine Valley in Switzerland. Boundary-Layer Meteorol 127(3): 449–467. https://doi.org/10.1007/s10546-008-9267-0.
Hu, Zewen, Sun, Jianjun, and Wu, Yishan. 2013. A review of domestic knowledge graph application research. Library and Intelligence Work 57(3): 131–137, 84.
JASSAL, R.S., BLACK, T.A., NOVAK, M.D., GAUMONT-GUAY, D., and NESIC, Z. 2008. Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology 14(6): 1305–1318. https://doi.org/10.1111/j.1365-2486.2008.01573.x.
Jassal, R.S., Black, T.A., Spittlehouse, D.L., Brümmer, C., and Nesic, Z. 2009. Evapotranspiration and water use efficiency in different-aged Pacific Northwest Douglas-fir stands. Agricultural and Forest Meteorology 149(6–7): 1168–1178. https://doi.org/10.1016/j.agrformet.2009.02.004.
Jiao, Xing, Liu, Guangquan, Kuang, Shangfu, and Tu, Xiaoning. 2010. Application of Penman-Monteith model in the study of evapotranspiration of forest vegetation. Journal of Water Resources 41(2): 245–252. https://doi.org/10.13243/j.cnki.slxb.2010.02.016.
Konings, A.G., Saatchi, S.S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W.R.L., Humphrey, V., Matheny, A.M., Trugman, A., Sack, L., Agee, E., Barnes, M.L., Binks, O., Cawse-Nicholson, K., Christoffersen, B.O., Entekhabi, D., Gentine, P., Holtzman, N.M., Katul, G.G., Liu, Y., Longo, M., Martinez-Vilalta, J., McDowell, N., Meir, P., Mencuccini, M., Mrad, A., Novick, K.A., Oliveira, R.S., Siqueira, P., Steele-Dunne, S.C., Thompson, D.R., Wang, Y., Wehr, R., Wood, J.D., Xu, X., and Zuidema, P.A. 2021. Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology 27(23): 6005–6024. https://doi.org/10.1111/gcb.15872.
Li, X., Black, T.A., Zha, T., Jassal, R.S., Nesic, Z., Lee, S., Bourque, C.P. ‐A., Hao, S., Jin, C., Liu, P., Jia, X., and Tian, Y. 2024. Long‐term trend and interannual variation in evapotranspiration of a young temperate Douglas‐fir stand over 2002–2022 reveals the impacts of climate change. Plant Cell & Environment 47(10): 3966–3978. https://doi.org/10.1111/pce.15000.
Li, Z., Ma, T., Cai, Y., Fei, T., Zhai, C., Qi, W., Dong, S., Gao, J., Wang, X., and Wang, S. 2023. Stable or unstable? Landscape diversity and ecosystem stability across scales in the forest–grassland ecotone in northern China. Landscape Ecology 38(12): 3889–3902. https://doi.org/10.1007/s10980-023-01654-6.
Li, Z., Yang, Y., Kan, G., and Hong, Y. 2018. Study on the Applicability of the Hargreaves Potential Evapotranspiration Estimation Method in CREST Distributed Hydrological Model (Version 3.0) Applications. Water 10(12): 1882. https://doi.org/10.3390/w10121882.
Liou, Y.-A., and Kar, S. 2014. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 7(5): 2821–2849. https://doi.org/10.3390/en7052821.
Liu, Y., Zhou, X., Wang, F., Liu, C., Xie, J., Guan, L., and Xie, Y. 2022. Bibliometric analysis of publications on necroptosis from 2001 to 2021. Frontiers in Cell and Developmental Biology 10. https://doi.org/10.3389/fcell.2022.946363.
Liu, Z., Jiang, F., Zhu, Y., Li, F., and Jin, G. 2018. Spatial heterogeneity of leaf area index in a temperate old-growth forest: Spatial autocorrelation dominates over biotic and abiotic factors. Science of the Total Environment 634: 287–295. https://doi.org/10.1016/j.scitotenv.2018.03.333.
Lu, M., Beerten, K., Gedeon, M., and Huysmans, M. 2020. Detecting groundwater discharge to a small river channel using ground‐based thermal infrared imagery and radon‐222. Hydrological Processes 34(18): 3842–3844. https://doi.org/10.1002/hyp.13839.
Lu, N., Chen, S., Wilske, B., Sun, G., and Chen, J. 2011. Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. Journal of Plant Ecology 4(1–2): 49–60. https://doi.org/10.1093/jpe/rtq035.
Lu, Shihui, Zhao, Hongli, Jiang, Yunzhong, Hao, Zhen, Zhang, xiangming, and Chen, genfa. 2021. Irrigation water use analysis based on multi-source remote sensing data and water balance principle. Journal of Water Resources 52(9): 1126–1135. https://doi.org/10.13243/j.cnki.slxb.20210275.
Ma, X., Feng, Q., Su, Y., Yu, T., and Jin, H. 2017. Forest Evapotranspiration and Energy Flux Partitioning Based on Eddy Covariance Methods in an Arid Desert Region of Northwest China. Advances in Meteorology 2017: 1–10. doi:10.1155/2017/1619047.
Meng, Fanrong, Zheng, Ye, and Yang, Rouyu. 2016. Influence factors of citation frequency of core journal papers on science and technology management - An empirical study based on five highly cited domestic journals. Publishing Science 24(2): 57–63. https://doi.org/10.13363/j.publishingjournal.2016.02.015.
Moustafa, T., and Chahine. 1992. The hydrological cycle and its influence on climate. Nature 359(6394): 373–380. https://doi.org/10.1038/359373a0.
Nouri, M., Ebrahimipak, N.A., and Hosseini, S.N. 2022. Estimating reference evapotranspiration for water-limited windy areas under data scarcity. Theoretical and Applied Climatology 150(1–2): 593–611. https://doi.org/10.1007/s00704-022-04182-6.
Pareeth, S., and Karimi, P. 2023. Evapotranspiration estimation using Surface Energy Balance Model and medium resolution satellite data: An operational approach for continuous monitoring. Scientific Reports 13(1). https://doi.org/10.1038/s41598-023-38563-2.
Paul-Limoges, E., Wolf, S., Schneider, F.D., Longo, M., Moorcroft, P., Gharun, M., and Damm, A. 2020. Partitioning evapotranspiration with concurrent eddy covariance measurements in a mixed forest. Agricultural and Forest Meteorology 280: 107786. https://doi.org/10.1016/j.agrformet.2019.107786.
Price, D.J.D.S. 1963. Little science, big science. Columbia university press.
Qiu, T., Huang, W., Wright, J.S., Yang, Z., and Wang, B. 2022. Impacts of Western Disturbances on Wintertime Precipitation Over the Southeastern Tibetan Plateau. Journal of Geophysical Research: Atmospheres 127(7). https://doi.org/10.1029/2021jd035789.
Reichstein, M., Ciais, P., Papale, D., Valentini, R., RUNNING, S., Viovy, N., ... & Zhao, M. 2007. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Global Change Biology, 13(3), 634-651.https://doi.org/10.1111/j.1365-2486.2006.01224.x.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11(9): 1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x.
Richardson, A.D., Keenan, T.F., Migliavacca, M., Ryu, Y., Sonnentag, O., and Toomey, M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169: 156–173. https://doi.org/10.1016/j.agrformet.2012.09.012.
Roche, J.W., Goulden, M.L., and Bales, R.C. 2018. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11(7): e1978. https://doi.org/10.1002/eco.1978.
Ruiz-Aĺvarez, M., Gomariz-Castillo, F., and Alonso-Sarría, F. 2021. Evapotranspiration Response to Climate Change in Semi-Arid Areas: Using Random Forest as Multi-Model Ensemble Method. Water 13(2): 222. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/w13020222.
Samadzadegan, F., Toosi, A., and Javan, F.D. 2025. A critical review on multi-sensor and multi-platform remote sensing data fusion approaches: current status and prospects. INT J REMOTE SENS 46(3): 1327–1402. Taylor & Francis. https://doi.org/10.1080/01431161.2024.2429784.
Scholz, K., Ejarque, E., Hammerle, A., Kainz, M., Schelker, J., and Wohlfahrt, G. 2021. Atmospheric CO2 Exchange of a Small Mountain Lake: Limitations of Eddy Covariance and Boundary Layer Modeling Methods in Complex Terrain. Journal of Geophysical Research: Biogeosciences 126(7). doi:10.1029/2021jg006286.
Shabani, S., Samadianfard, S., Sattari, M.T., Mosavi, A., Shamshirband, S., Kmet, T., and Várkonyi-Kóczy, A.R. 2020. Modeling Pan Evaporation Using Gaussian Process Regression K-Nearest Neighbors Random Forest and Support Vector Machines; Comparative Analysis. Atmosphere 11(1): 66. https://doi.org/10.3390/atmos11010066.
Shao, X., Zhang, Y., Liu, C., Chiew, F.H.S., Tian, J., Ma, N., and Zhang, X. 2022. Can Indirect Evaluation Methods and Their Fusion Products Reduce Uncertainty in Actual Evapotranspiration Estimates? Water Resources Research 58(6). doi:10.1029/2021wr031069.
Sharafi, S., and Ghaleni, M.M. 2024. Revealing accuracy in climate dynamics: enhancing evapotranspiration estimation using advanced quantile regression and machine learning models. Applied Water Science 14(7). https://doi.org/10.1007/s13201-024-02211-5.
Shu, Jianmin and Cao, Hongfa. 1992. Effects of acidic precipitation on forests in China. Environmental Science Research (5): 42–45. https://doi.org/10.13198/j.res.1992.05.44.shujm.008.
Soós, S., and Kiss, A. 2020. Informetrics and the study of science–society communications: a bibliometric scoping review. Scientometrics 124(2): 825–842. https://doi.org/10.1007/s11192-020-03444-2.
Srinet, R., Nandy, S., Watham, T., Padalia, H., Patel, N.R., and Chauhan, P. 2022. Measuring evapotranspiration by eddy covariance method and understanding its biophysical controls in moist deciduous forest of northwest Himalayan foothills of India. Tropical Ecology 63(3): 387–397. https://doi.org/10.1007/s42965-021-00216-8.
Sun, S., Gu, H., and Wang, X. 2025. The balance and potometric sap flow calibration approaches that rely on transpirational pull yield inconsistent estimates of transpiration. Trees, Forests and People 20: 100820. https://doi.org/10.1016/j.tfp.2025.100820.
Tang, R., Li, Z.-L., Jia, Y., Li, C., Chen, K.-S., Sun, X., and Lou, J. 2012. Evaluating one- and two-source energy balance models in estimating surface evapotranspiration from Landsat-derived surface temperature and field measurements. International Journal of Remote Sensing 34(9–10): 3299–3313. https://doi.org/10.1080/01431161.2012.716529.
Tortajada, C., Koh, R., Bindal, I., and Lim, W.-K. 2021. Compounding focusing events as windows of opportunity for flood management policy transitions in Singapore. Journal of Hydrology 599: 126345. https://doi.org/10.1016/j.jhydrol.2021.126345.
Unsworth, M.H. 1984. Evaporation from forests in cloud enhances the effects of acid deposition. Nature 312(5991): 262–264. https://doi.org/10.1038/312262a0.
Vinukollu, R.K., Wood, E.F., Ferguson, C.R., and Fisher, J.B. 2011. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment 115(3): 801–823. https://doi.org/10.1016/j.rse.2010.11.006.
Wang, H., Zhou, Y., and Li, X. 2025. GDCM: Generalized data completion model for satellite observations. Remote Sensing of Environment 324: 114760. https://doi.org/10.1016/j.rse.2025.114760.
Wang, J., Sang, X., Zhai, Z., Liu, Y., and Zhou, Z. 2014. An Integrated Model for Simulating Regional Water Resources Based on Total Evapotranspiration Control Approach. Advances in Meteorology 2014: 1–10. https://doi.org/10.1155/2014/345671.
Wang, liya. 2013. Research on topic mutation based on keyword mutation. Intelligence Theory and Practice 36(11): 45–48. https://doi.org/10.16353/j.cnki.1000-7490.2013.11.021.
Wang, Z., and Wang, C. 2023. Interactive effects of elevated temperature and drought on plant carbon metabolism: A meta-analysis. Global Change Biology 29(10): 2824–2835. https://doi.org/10.1111/gcb.16639.
WASTI, S., MA, W., and MA, Y. 2020. Estimation of land surface evapotranspiration using the METRIC model in Nepal. Atmospheric and Oceanic Science Letters 13(6): 509–517. https://doi.org/10.1080/16742834.2020.1824984.
Xing, Zhenxiang, Fu, Shuang, Sun, Mingxin, Ji, Yi, Fu, Qiang, and Li, Heng. 2020. Application of remotely sensed evapotranspiration in flood simulation in areas without station data. Journal of Northeast Agricultural University 51(2): 78–85. https://doi.org/10.19720/j.cnki.issn.1005-9369.2020.02.0010.
Xu, T., Guo, Z., Xia, Y., Ferreira, V.G., Liu, S., Wang, K., Yao, Y., Zhang, X., and Zhao, C. 2019. Evaluation of Twelve Evapotranspiration Products from Machine Learning, Remote Sensing and Land Surface Models over Conterminous United States. Journal of Hydrology 578: 124105. v10.1016/j.jhydrol.2019.124105.
Xu, X., Li, J., and Tolson, B.A. 2014. Progress in integrating remote sensing data and hydrologic modeling. Progress in Physical Geography: Earth and Environment 38(4): 464–498. https://doi.org/10.1177/0309133314536583.
Xu, Yiyuan, Deng, Jie, Wu, Yingchao, and Qian, Zhichao. 2023. Overview of the development of forest transpiration research. Water Resources Planning and Design (7): 68–73.
Yang, Y., Anderson, M.C., Gao, F., Wood, J.D., Gu, L., and Hain, C. 2021. Studying drought-induced forest mortality using high spatiotemporal resolution evapotranspiration data from thermal satellite imaging. Remote Sensing of Environment 265: 112640. https://doi.org/10.1016/j.rse.2021.112640.
Yang, Y., Roderick, M.L., Guo, H., Miralles, D.G., Zhang, L., Fatichi, S., Luo, X., Zhang, Y., McVicar, T.R., Tu, Z., Keenan, T.F., Fisher, J.B., Gan, R., Zhang, X., Piao, S., Zhang, B., and Yang, D. 2023. Evapotranspiration on a greening Earth. Nat Rev Earth Environ 4(9): 626–641. https://doi.org/10.1038/s43017-023-00464-3.
Yu, H., Yang, L., Wang, Z., Guo, L., Peng, C., Yao, Q., Mo, Z., and Tan, T. 2023. Divergent response of leaf unfolding to climate warming in subtropical and temperate zones. Agricultural and Forest Meteorology 342: 109742. https://doi.org/10.1016/j.agrformet.2023.109742.
Zan, B., Ge, J., Mu, M., Sun, Q., Luo, X., and Wei, J. 2024. Spatiotemporal inequality in land water availability amplified by global tree restoration. Nature Water 2(9): 863–874. https://doi.org/10.1038/s44221-024-00296-5.
Zhan, C., Orth, R., Migliavacca, M., Zaehle, S., Reichstein, M., Engel, J., Rammig, A., and Winkler, A.J. 2022. Emergence of the physiological effects of elevated CO2 on land–atmosphere exchange of carbon and water. Global Change Biology 28(24): 7313–7326. https://doi.org/10.1111/gcb.16397.
Zhang, K., Chen, H., Ma, N., Shang, S., Wang, Y., Xu, Q., and Zhu, G. 2024. A global dataset of terrestrial evapotranspiration and soil moisture dynamics from 1982 to 2020. Scientific Data 11(1). https://doi.org/10.1038/s41597-024-03271-7.
Zhang, K., Kimball, J.S., and Running, S.W. 2016. A review of remote sensing based actual evapotranspiration estimation. WIREs Water 3(6): 834–853. https://doi.org/10.1002/wat2.1168.
Zhang, Xiaoyu, Jia, Guodong, Yu, Xinxiao, Sun, Libo, and Jiang, Tao. 2024. Characteristics of canopy stomatal conductance of Populus simonii stands with different degradation degrees and its responses to environmental factors. Journal of Plant Ecology 48(9): 1143–1156.https://doi.org/10.17521/cjpe.2023.0106.
Zhao, K., Yue, Y., Qin, F., Hai, L., Yi, L., Zhao, P., Hao, L., Shu, Y., Zheng, Y., Li, L., He, R., and Xu, Y. 2024. Carbon storage and carbon pool characteristics of Larix gmelinii forest in Daxing’anling, Inner Mongolia, China. Frontiers in Veterinary Science 7. https://doi.org/10.3389/ffgc.2024.1419023.
Zhao, Shen and Chen, Shaohui. 2017. Temporal and spatial changes of evapotranspiration and potential evapotranspiration in Shandong Province based on station and MOD16 data. Progress in Geography 36(8): 1040–1047.
Zhou, Chenran, Cheng, Lei, Qin, Shujing, Zhang, lu, and Fu, Chenhao. 2025. Influences of canopy resistance on forest evapotranspiration estimates at different development stages. Journal of Agricultural Engineering 41(3):154–162. https://doi.org/162.10.11975/j.issn.1002-6819.202408081.
Zou, L., Zhan, C., Xia, J., Wang, T., and Gippel, C.J. 2017. Implementation of evapotranspiration data assimilation with catchment scale distributed hydrological model via an ensemble Kalman Filter. Journal of Hydrology 549: 685–702. https://doi.org/10.1016/j.jhydrol.2017.04.036.