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Abstract Winter wheat constitutes a fundamental cereal crop in China's
agricultural system, playing a pivotal role in national food security. Timely and
accurate acquisition of winter wheat cultivation area distribution is crucial for
effective management, yield estimation, and ensuring food security. This study
focuses on Hebi City as the research area, selecting Sentinel-1 and Sentinel-2
imageries from October 2021 to June 2022. The research was conducted on the
Google Earth Engine (GEE) cloud computing platform, employing a multi-feature
approach that integrated polarization characteristics, spectral properties, vegetation
indices, textural features, and topographic parameters across various phenological
stages of winter wheat. The random forest algorithm was implemented for crop
classification and area extraction. The results show that: (1) The optimized feature
sets constructed based on the Pearson correlation coefficient can improve overall
classification accuracy, with an overall accuracy exceeding 90% across all schemes.
(2) Adding both texture and polarization features can improve the overall
classification accuracy of the heading stage and the full phenological period, most
significantly in the full phenological period; (3) The extraction scheme for winter
wheat planting area during the milk ripening stage, considering the optimized
texture features and preferred polarization features, is the most effective method,
achieving an overall accuracy of 98.1% and a Kappa coefficient of 0.976. The
achievements of this research have broad application prospects in guiding regional
precision winter wheat cultivation, optimizing agricultural resource allocation,
supporting grain yield prediction, and ensuring national food security. It is expected
to provide strong data support and technical references for agricultural management
departments in making scientific decisions.

1. Introduction

As a crucial staple crop in China's agricultural system, winter wheat exhibits
substantial interannual variability in its cultivated acreage. Precise and timely
monitoring of the spatial distribution patterns and cultivation extent of this crop enables
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agricultural management agencies to make data-driven decisions and implement effective agricultural policies. The
accurate delineation of winter wheat planting areas serves as a fundamental basis for yield forecasting, resource
allocation, and sustainable agricultural planning (Tian et al., 2022). Traditional methods of monitoring agricultural
planting areas are inefficient and often lack comprehensive coverage. In addition, they can be significantly influenced by
subjective factors of surveyors (Wang et al., 2023). Remote sensing technology provides substantial benefits in acquiring
data on the distribution of crop planting areas, characterized by extensive coverage, promptness, and cost-effectiveness.
As a result, it has been widely applied in agricultural production (Huang et al., 2022).

The current studies on the extraction of winter wheat planting area using satellite remote sensing can be categorized into
three main aspects. The first aspect is the data sources utilized in the research, which can be divided into single data
source and multi-source data. The second aspect pertains to the phenological period, which includes single phenological
period and multi-phenological period. The third aspect is the feature set, which can be either single feature or multi-
feature set. From the perspective of data sources, most studies use a single remote sensing sensor such as sentinel-1
(Wang et al., 2024; Xiao et al., 2023; Schlund and Erasmi, 2020), sentinel-2 (Wang et al., 2023; Chen et al., 2024; Liu et
al., 2024; Mashonganyika et al., 2021), MODIS (Potgieter et al., 2007; Ren et al., 2021), and Landsat (Zhang et al., 2023)
to extract the winter wheat planting area. Passive optical remote sensing is the main data source that is used in the current
crop classification research. Active radar remote sensing is distinguished by the capability to acquire all-weather data
continuously and its significant penetrating ability (Lucas et al., 2020). Active and passive remote sensing have their own
advantages, but land cover information reflected by a single sensor is limited. The integration of multi-source data
significantly enhances the precision of delineating winter wheat planting areas (Li et al., 2023; Ma et al., 2021; Zhang et
al., 2023; Zhang et al., 2019; Blickensdörfer et al., 2022).

As for any specific phenological time for research and experiments, experts and scholars usually extract the winter wheat
planting area based on one or several images within the phenological period (Luo et al., 2019; Zhao et al., 2022; Yang et
al., 2020; Liu et al., 2022; Qu et al., 2021), which seems efficient and operable. However, when the planting structure in
the study area is complex and identifying "crop’s key phenological characteristics" becomes challenging, the results and
accuracy obtained by using this method are often not satisfactory (Hu et al., 2015). The extraction of winter wheat
planting information by integrating multiple or even full phenological periods (Li et al., 2019; Wu et al., 2023; Sun et al.,
2024) makes full use of spectral and spatial characteristics, and takes into account the changes of characteristic indices
during the whole growth cycle, which can avoid the impacts of some external factors such as sudden weather changes
and man-made destruction.

In terms of the application of feature sets in classification and recognition, the commonly used features used for
extracting winter wheat planting information based on a single feature are NDVI (Qi et al., 2022; Jakubauskas et al.,
2002; Atzberger and Rembold, 2013; Li et al., 2021) and EVI (Yan et al., 2009; Pan et al., 2011; Zhao et al., 2021),
while the multi-feature set is mostly composed of spectral features, vegetation index features, texture features, terrain
features, and polarization features (Chang et al., 20245; Xie et al., 2024; Zhang et al., 2023). The technique for extracting
the cultivated area of winter wheat using a singular characteristic from time-series images is highly practical and efficient;
however, the choice of a single characteristic is significantly subjective. The integration of multi-dimensional
characteristic quantities can effectively solve the problems of spectral mixing or variation at the junction and inside of
mixed crops. This method is also suitable for the regions with complex crop planting structures (Hu et al., 2015).

Although using multiple feature sets can improve winter wheat identification accuracy, too many features may cause data
redundancy. This negatively affects classification efficiency and accuracy. Therefore, how to scientifically select features
and reduce dimensionality has become an urgent problem to solve. At present, although some researches have explored
the method of feature selection, the comprehensive and systematic feature selection based on the fusion of sentinel active
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and passive remote sensing data, combined with a variety of features, and at the same time, the research on the influence
of phenology and feature index on the extraction accuracy of winter wheat is still insufficient.

Thus, feature dimensionality reduction becomes essential. Feature optimization serves as a dimensionality reduction
technique. It involves selecting a subset of features from the original set based on specific criteria (Cai et al., 2018).
Some scholars optimized the characteristics according to the importance of random forest characteristics (Amini et al.,
2022). Other scholars have extracted winter wheat based on the combination of random forest parsimony feature and
Pearson correlation coefficient, and proved that this method can improve the classification accuracy and the efficiency of
classifier (Feng et al., 2022). It provides a feasible basis for the feature optimization method based on Pearson correlation
analysis.

To sum up, this study uses the fusion of sentinel active and passive remote sensing data as the data source, and
comprehensively uses spectral features, vegetation index features, terrain features, texture features and polarization
features, and carries out feature optimization. By setting different classification schemes, the aim is to improve the
accuracy of winter wheat planting area extraction, and to explore the impact of phenology and characteristic index on the
extraction accuracy, so as to explore the optimal scheme of winter wheat planting area extraction, make up for the
shortcomings of existing research, and provide more efficient and accurate technical methods for winter wheat planting
monitoring.

2. Data and Methods

2.1. Study Area

Hebi City, an important winter wheat planting area, is located in the north of Henan Province, spanning from 35°26′0″
to 36°2′54″ north latitudes and from 113°5′23″ to 114°45′12″ east longitudes (Figure 1). Hebi City is situated at the
confluence of the eastern Taihang Mountains and the North China Plain, spanning a total area of 2,182 square kilometers.
The topography of Hebi City is characterized by mountains in the northwest, hills extending in a north-south direction
across the central and eastern parts, and plains in the eastern and southeastern areas. The region experiences a warm
temperate semi-humid monsoon climate, with an annual average temperature ranging from 14.2 to 15.5℃ , annual
precipitation between 349.2 and 970.1 mm, and annual sunshine duration from 1,787.2 to 2,566.7 hours. The agricultural
system in this area is based on a winter wheat-summer maize rotation. Winter wheat is typically sown in mid-October and
harvested in early June of the following year.
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Fig. 1 The location of Hebi City and the distribution map of sample points

2.2. Data

2.2.1. Sentinel Image

The high spatial-temporal resolution and unrestricted access to sentinel data have made it highly favored among
agricultural remote sensing specialists and scholars, establishing it as the primary data source for crop remote sensing
monitoring. The download and processing of sentinel active and passive remote sensing data in this study are based on the
GEE (Google Earth Engine) platform, and the required remote sensing data can be called through
"ee.imagecollection("COPERNICUS/S1_GRD"), " ee.imagecollection("COPERNICUS/S2_SR_HARMONIZED").

In this study, we selected sentinel-1 interference wideband (IW) mode imaging, including 10m resolution GRD
products with VV and VH polarization modes. For the sentinel-1 GRD product data, firstly, the terrain correction
algorithm built in the GEE platform is used, combined with the digital elevation model (DEM) data of the study area, to
correct the terrain, so as to eliminate the influence of terrain fluctuation on the radar backscatter coefficient. After
correction, S-G filtering algorithm is used for filtering and noise reduction. After the above processing, 10m resolution
images including VV and VH polarization modes are obtained.

Sentinel-2 adopts L2A product after atmospheric correction. Firstly, the data are filtered according to the cloud content
less than 20% to reduce the interference of cloud on the image spectral information. We assessed the filtered photos,
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discarded data significantly affected by cloud cover, and retained photographs devoid of clouds or with minimal cloud
interference. Due to the differences in the original resolution of different bands of sentinel-2, in order to facilitate
subsequent analysis, the resolution of all bands of the image is uniformly resampled to 10m through bicubic curve
resampling. The elevation data of the study area can be obtained from GEE platform through "ee.image ("
usgs/srtmgl1_003 "). The elevation data is added to the sentinel-2 image as a new band.

2.2.2. Sample Data

Given that field sampling is more labor-intensive and material-consuming, this paper selected samples by visual
inspection and manual selection based on the Sentinel-2 optical images combined with Google Earth images. Based on the
land cover characteristics in the study area, the ground objects were divided into winter wheat (wheat), building land
(building), water (water), non-winter wheat vegetation (nonwheat_Veg), and bare soil (soil). Among them, non-winter
wheat vegetation included all green vegetation except winter wheat, comprising other crops, shrubs, grasslands,
woodlands, etc.; building samples included houses, roads, greenhouses and lands under construction; bare soil samples
included bare lands covered with artificial materials such as sand and stones. To ensure the selecting accuracy of winter
wheat sample points and using the cloud-free images of the study area during the overwintering period of winter wheat
(February 26, 2022), contiguous green areas were selected as winter wheat sample points. Non-winter wheat vegetation
samples were selected based on the image of the winter wheat milky-ripe stage (June 16, 2022), and bare soil samples
were selected based on the image of the winter wheat heading and flowering stage (May 17, 2022). Finally, 1500 winter
wheat samples, 880 built-up area samples, water bodies, and non-winter wheat vegetation, and 860 bare soil samples were
selected, making up a total of 5000 sample points. The sample points, distributed as shown in Figure 1, were randomly
divided into training and validation samples at a ratio of 7:3.

2.2.3. Statistical Data

The data on winter wheat planting areas in each county and district of Hebi City are sourced from the Henan Statistical
Yearbook and the Hebi Statistical Yearbook. These data are utilized to assess the accuracy of winter wheat planting area
extraction in Hebi City for the year 2021.

2.3. Methods

On the Google Earth Engine (GEE) platform, Sentinel active and passive remote sensing images of the study area were
collected for the entire phenological period of winter wheat from October 1, 2021, to June 30, 2022. These images were
used to generate the NDVI variation curve, as depicted in Figure 2.

It can be seen in Figure 2 that during October 24, 2021 to December 28, 2021, the NDVI value of winter wheat
gradually increased, while the NDVI value of other green vegetation decreased, and the two intersected, which was
considered as the winter wheat seedling stage and tillering stage, respectively. From December 28, 2021 to March 8, 2022,
the NDVI value of winter wheat fluctuated but remained unchanged on the whole, which should be the overwintering
period of winter wheat. During this period, the NDVI value of other non-winter wheat vegetation gradually decreased.
From March 8, 2022 to April 2, 2022, winter wheat was in the reviving stage, and the NDVI value increased rapidly. At
this time, the majority of the other vegetation covers have not yet verdantly emerged and flourished, and the gap between
the NDVI value of winter wheat and other vegetation began to increase. April 2, 2022 to May 2, 2022, was considered the
jointing and booting stage of winter wheat (hereinafter referred to as the jointing stage). At this time, organs such as ears,
leaves and stems grew simultaneously, the leaf area and the length and volume of stems and ears increased by several or
dozens of times, and the accumulation of dry matter also entered a rapid growth stage. At this time, the difference in
NDVI value between winter wheat and other vegetation classes was largest. By early May, winter wheat entered the
heading and flowering stage (hereinafter referred to as the heading stage). The nutrients in the wheat plants were
transported to the grains in the ears and accumulated, and the grains began to deposit starch. In June, upon reaching the
milky-ripe stage, the wheat grains yellowed and the plants desiccated, resulting in a rapid decline of the NDVI value for
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winter wheat, which fell below the NDVI characteristic value of other vegetation types and intersected with their NDVI
curve.

Fig. 2 NDVI Changes in different land features

Thus, the whole phenological period of winter wheat was divided into six phenological periods: seedling stage,
overwintering stage, reviving stage, jointing stage, heading stage, and milky-ripe stage (Table 1). In terms of time, the
mean values of the filtered images were synthesized into one image corresponding to the phenological period, resulting in
a total of 6 Sentinel-2 images. The multi-band images of each phenological period were subjected to Pearson correlation
analysis for feature selection. Based on the optimized feature variables, the random forest algorithm was used to extract
winter wheat, and the contribution of different feature variables to the extraction of winter wheat and the influence of
different phenological periods on the identification and extraction of winter wheat were explored.

Table 1. Key phenological calendar and image number

Phenological period Time frame Number of images
Seedling stage 2021.10.24-2021.12.30 6

Overwintering stage 2022.01.01-2022.03.09 5
Reviving stage 2022.03.10-2022.04.03 3
Jointing stage 2022.04.04-2022.05.03 2
Heading period 2022.05.04-2022.06.01 1

Milk ripening period 2022.06.01-2022.06.30 3

2.3.1. Feature Set Construction
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In remote sensing classification, feature selection is crucial. Properly chosen features can significantly enhance
classification accuracy (Luo et al., 2022). This paper identifies 12 spectral characteristics, 10 associated vegetation index
characteristics, terrain characteristics, and texture characteristics from Sentinel-2 image data, based on the phenological
attributes of ground objects and the crop planting structure in the study area. It also incorporates the polarization
characteristics of Sentinel-1, along with addition, subtraction operations, and ratio polarization characteristics of the two,
to construct the feature set, as detailed in Table 2.

Table 2. Characteristic variables

Satellite Group Characteristic variables

Sentinel-1 Polarization features

VV

VH

ratio = VV/VH

plus = VV+VH

reduce = VV-VH

Sentinel-2

Index features

Normalized Difference Vegetation Index (NDVI) (RouseJr et al.,1973)

Green Normalized Difference Vegetation Index (GNDVI) (Gitelson et al., 1996)

Enhanced vegetation index (EVI) (Huete et al., 1997)

Optimized Soil-Adjusted Vegetation Index (OSAVI) (Rondeaux et al., 1996)

Modified Soil Adjusted Vegetation Index (MSAVI) (Qi et al., 1994)

Modified Normalized Difference Water Index (MNDWI) (Xu., 2005)

Normalized Difference Building Index (NDBI) (Zha et al., 2003)

Bare soil index (BSI) (Diek et al., 2017)

Modified Bare soil index (MBI) (Nguyen et al., 2021)

Enhanced Modified Bare Soil Index (EMBI) (Zhao and Zhu., 2022)

Spectral features Full spectrum bands

Topographic features
Elevation

Slope

Texture features

Angular Second Moment (ASM)

Contrast

Correlation

Variance

Inverse Differential Moment (IDM)

Entropy

Mean

Dissimilarity
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Spectral characteristics serve as the fundamental basis for judging and classifying the types of various features in
remote sensing images. All bands of Sentinel-2 images were selected as spectral band features. Vegetation index features
were calculated from the combination of different bands, and hence each index has different advantages and functions in
classification. Based on the literature and the spectral characteristics of winter wheat, ten vegetation indices were selected
(Radočaj et al., 2023), including Enhanced Vegetation Index (EVI), Normalized Vegetation Index (NDVI), Green
Normalized Difference Vegetation Index (GNDVI), Optimizing soil adjusted vegetation index (OSAVI), Modified soil
adjusted vegetation index (MSAVI), Modified Normalized Difference Water Index (MNDWI), Normalized difference
building index (NDBI), Bare soil index (BSI), Modified Bare Soil Index (MBI), Enhanced modified bare soil index
(EMBI).

Texture features were extracted from images using the Gray-level Co-occurrence Matrix (GLCM) method. These
features are essential for identifying surface characteristics in images, since different surface features exhibit unique
texture patterns. Some researchers believe that adding texture features can effectively improve the phenomenon of "same
object with different spectra, different objects with the same spectra" (Xiong et al., 2021). The GLCM takes the gray level
and position of the pixel as the research object, reflecting multi-dimensional information such as the direction, adjacent
interval, and variation amplitude of the pixel’s gray level (Liu et al., 2022). In GEE, the "glcmTexture()" function can be
used to calculate GLCM texture features.

To avoid the redundancy caused by too many texture features in the process of training classification models, eight
most commonly used texture features were selected, including angular second moment, contrast, correlation, variance,
mean, dis-similarity, inverse difference moment, and entropy.

2.3.2. Random Forest Algorithm

The random forest (RF) algorithm was chosen for classification. RF consists of multiple CART decision trees and
belongs to the supervised classification machine learning algorithms. Relevant research shows that RF algorithm has good
classification accuracy and robustness compared with other machine learning algorithms (Pu et al., 2020; Yao et al., 2022).
The RF algorithm in GEE can also determine the weight of input features at the same time, which is widely used in
remote sensing supervised classification (Praticò et al., 2021). RF algorithm requires two variables: the number of feature
variables and the number of decision trees. The number of feature variables is mostly fixed, while the number of decision
trees needs to be determined. The classification accuracy diminishes with an insufficient number of decision trees, while
an excessive quantity leads to stabilized accuracy at the expense of operational speed. The GEE platform can perform
hyperparameter tuning for the number of decision trees. When the number of decision trees is greater than 50, the
classifier accuracy basically remains stable (Guo et al., 2021). Therefore, during classification, hyperparameter tuning
tests are performed within the range of 0-50 for the number of decision trees. We tried a series of values and selected the
minimum value likely to produce the highest accuracy. This allowed us to extract winter wheat with the best classification
accuracy by selecting the optimal number of decision trees.

2.3.3. Feature Optimization

The total number of features selected in the early stage was 35, which made full use of the spectral and spatial
information of the image. Nevertheless, an increased number of features did not correlate with enhanced quality.
Excessive features will not only increase the complexity of the model and information redundancy, but can also cause
"dimensional disaster", thereby reducing the classification performance (Uddin et al., 2021). This study utilizes the
Pearson correlation coefficient to examine all classification features and variable types. Features with an absolute
correlation coefficient greater than 0.8 are removed to reduce model redundancy.

Pearson correlation coefficient quantifies the linear relationship between two variables by calculating the quotient of
the covariance and the product of standard deviations of the two variables. Its value ranges from -1 to 1, with 1 indicating
a perfect positive correlation, -1 indicating a perfect negative correlation, and 0 indicating no linear relationship.
According to the absolute value of the correlation coefficient, the strength of linear correlation is divided into: 0.00-0.19
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"very weak", 0.20-0.39 "weak", 0.40-0.59 "medium", 0.60-0.79 "strong", and 0.80-1.00 "very strong". Correlation
coefficient can be expressed as follows:

  
   2 2

i i

i i

X X Y Y
r

X X Y Y

 


 




(1)

Where, (r) represents the Pearson correlation coefficient, which reflects the degree of linear correlation between two
variables; ( iX ) is the i-th data point of variable X; ( iY ) is the i-th data point of variable Y; ( X )is the mean value of

variable X; (Y )is the mean value of variable Y.

2.3.4. Accuracy Assessment

To effectively evaluate the extraction accuracy of winter wheat areas, four indicators, including Overall Accuracy
(OA), Producer Accuracy (PA), User Accuracy (UA), and Kappa coefficient, were selected(Wu et al., 2023). The
extracted winter wheat planting area was compared with the winter wheat planting area of Hebi City and its five counties
and districts provided by the Henan Statistical Yearbook and the Hebi Statistical Yearbook. The results of classification
were assessed using the coefficient of determination (R²) and the root mean square error (RMSE) of the fitting curve
between the two variables.

2.3.5. Experimental Design

In order to explore the ability of the Sentinel’s active and passive remote sensing to extract winter wheat, and to
compare the effects of different phenological periods and characteristic variables on the winter wheat extraction accuracy,
the best plan to achieve the maximum improvement in the accuracy of winter wheat extraction was determined. Based on
the optimization of terrain features, spectral features, and vegetation index features, eight classification schemes (Table 3)
were designed. Among them, the difference between Schemes 1, 2, 3, and 4 and Schemes 5, 6, 7, and 8 lies in whether the
polarization feature is added. Schemes 1, 3, 5, and 7 and Schemes 2, 4, 6, and 8 are compared to study the impact of
texture features on classification accuracy. Schemes 1, 2, 5, and 6 and Schemes 3, 4, 7, and 8 were set to explore the
impact of the single and full phenological periods on the extraction of winter wheat.

Table 3. Classification Plan

Plan 1 2 3 4 5 6 7 8

Single phenological period    

Full phenological period    

Topographic features        

Spectral features        

Vegetation index features        

Texture features    

Polarization features    

2.3.6. Technical Route

The technical route of this study is shown in Figure 3. Firstly, the whole growth period of winter wheat is divided into
different growth periods according to the NDVI time series change curves of different features. According to the divided
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Reviving stage and Heading period, the sample data are selected in combination with Google Earth; Secondly, sentinel
image data and SRTM terrain data during the growth period of winter wheat were obtained in GEE platform, and
polarization features, spectral features, vegetation index features, texture features and terrain features were extracted
respectively; Thirdly, the extracted texture features are analyzed by principal component analysis, and the first three
principal components are retained to replace the texture features. The Pearson correlation coefficient is used to analyze the
correlation of other features, and the feature quantity with correlation coefficient greater than 0.8 is eliminated to construct
the optimal feature set; Finally, different features are set to participate in the extraction of winter wheat planting area, the
extraction accuracy of different schemes is analyzed, and the influence of different features on the extraction of area is
explored, so as to explore the best extraction scheme for winter wheat in Hebi.

Fig. 3 Technology Roadmap

3. Results

3.1. Preferred Categorical Features

3.1.1. Opting for Topographic, spectral and vegetation index features

Taking the image at seedling stage as an example, the Pearson correlation coefficient matrix is shown in Figure 4. The
visible light band is a commonly used band in optical classification and will not be removed. The correlation coefficients
between RE1(B5) and Green(B3), Red(B4) were greater than 0.8, so the RE1 band was eliminated. The correlation
coefficients between RE2(B6), RE3(B7), Narrow NIR(B8), and Narrow NIR(B8A) were all higher than 0.8. Considering
that Narrow NIR(B8) is one of the most widely used bands in spectral characteristic research, B8A band was retained. The
correlation coefficients between Water vapor(B9) and SWIR(B11) with B8A was greater than 0.8 for both, so they were
eliminated. The correlation coefficients between NDVI, GNDVI and OSAVI were higher than 0.8 for both, so the NDVI
feature was eliminated. GNDVI and EMBI had a high correlation with MNDWI, so MNDWI was eliminated. OSAVI had
a high correlation with MSAVI, so OSAVI was eliminated. The correlation coefficient between BSI and NDBI was 0.82.
Considering the need to extract building areas, the BSI feature band was eliminated. The correlation coefficient between
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MBI and NDBI was 0.91, so MBI was eliminated. The correlation coefficient between the height feature (elevation) and
slope feature (slope) in topographic features was 0.81. Based on the classification requirements, the slope feature was
eliminated. Therefore, the selected features during the seedling stage were B1, B2, B3, B4, B8A, NDBI, GNDVI, EVI,
MSAVI, EMBI, and elevation.

Fig. 4 Pearson correlation coefficient matrix at the seedling stage

3.1.2. Opting for Polarization features

The Pearson correlation analysis of the five feature variables of Sentinel-1 image in seedling stage is shown in Figure 5.
It can be seen that the sum of polarization values is highly correlated with VV and VH. In this paper, VV, VH, ratio and
reduce are selected as polarization feature variables.

Fig. 5 Correlation coefficient of polarization characteristics at the seedling stage
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3.1.3. Opting for Texture features

On the GEE platform, the gray-level co-occurrence matrix is used to extract image texture features, and the results of
the PCA analysis of its texture features are shown in Table 4. The first three principal components already contain 99.99%
of the information, so the first three principal components of texture features were selected as the optimal feature variables.

Table 4. Principal component analysis results of texture features

Characteristic components Percentage (%)
PC1 93.55
PC2 4.20
PC3 2.24
PC4 0.01
PC5 0.00
PC6 0.00
PC7 0.00
PC8 0.00

For each phenological period, based on the Pearson correlation coefficient among multiple indices of topographic
characteristics, spectral characteristics and vegetation index characteristics, the characteristic indices with the absolute
value greater than 0.8 were eliminated, and the optimal feature set for each phenological period was generated as shown in
Table 5.

Table 5. Optimal feature sets of topographic features, spectral features, and vegetation index features

Phenological period Preferred feature set
seedling stage B1, B2, B3, B4, B8A, NDBI, GNDVI, EVI, MSAVI, EMBI, elevation

Overwintering period B1, B2, B3, B4, B8A, B11, NDBI, GNDVI, EVI, EMBI, elevation
Rejuvenation B2, B3, B4, B8A, MNDWI, EVI, EMBI, elevation
Jointing stage B2, B3, B4, B6, B8A, MNDWI, EVI, EMBI, elevation
Heading period B2, B3, B4, B6, B8A, MNDWI, EVI, EMBI, elevation

Milk ripening period B1, B2, B3, B4, B8A, NDBI, MNDWI, GNDVI, EVI, elevation
Full phenological period B2, B3, B4, B8A, B11, NDBI, GNDVI, EVI, EMBI, elevation

Using VV, VH, ratio and reduce as the preferred polarization characteristic variables, and the first three principal
components of texture features as the preferred texture features, the classification feature set of each phenological period
was constructed.

3.2. Comparative analysis of the classification accuracy of different schemes

The GEE platform facilitates the RF classification of Sentinel active and passive remote sensing images of winter
wheat throughout its entire phenological period in Hebi City, enabling the extraction of winter wheat planting areas.
Additionally, the impact of various feature indices on the extraction accuracy of winter wheat during different
phenological stages was examined (Table 6).

Among these, the highest accuracy was achieved in scheme 5 by adding polarization features during the seedling stage,
with an overall accuracy of 97.3% and a Kappa coefficient of 0.966. The highest accuracy was achieved in scheme 2 by
adding texture features and excluding polarization features during the overwintering stage, with an overall accuracy of
97.2% and a Kappa coefficient of 0.964. The highest classification accuracy was achieved in scheme 1 by excluding both
texture and polarization features during the reviving stage, with an overall accuracy of 97.2% and a Kappa coefficient of
0.965, and a winter wheat mapping accuracy of 100%. The highest accuracy was achieved in scheme 5 by adding
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polarization and excluding texture features during the jointing stage, with an overall accuracy of 97.5% and a Kappa
coefficient of 0.968. The highest classification accuracy was achieved in scheme 6 by adding both polarization and texture
features during the heading and milky-ripe stages, with an overall accuracy of 97.8% and a Kappa coefficient of 0.972.
During the whole phenological period, the best result was achieved in scheme 7 with only optimal polarization features
added, with an overall accuracy of 98.6% and a Kappa coefficient of 0.983, which was also the highest overall accuracy
among all schemes.

Table 6. Classification accuracy statistics

Plan Index Seedling Overwintering Rejuvenation Jointing Heading Milk ripening Full period

1,3

OA/% 96.8 93.4 97.2 93.2 93.7 96.8 93.4
KAPPA 0.959 0.916 0.965 0.914 0.920 0.960 0.916
UA/% 98.9 98.9 99.6 98.6 98.9 97.6 99.3
PA/% 99.3 100.0 100.0 98.4 98.9 99.1 99.8

2,4

OA/% 91.8 97.2 93.9 97.5 97.3 97.8 94.9
KAPPA 0.896 0.964 0.922 0.968 0.965 0.972 0.935
UA/% 97.1 100.0 99.8 99.4 99.3 98.9 99.8
PA/% 98.7 100.0 99.8 99.4 99.3 98.9 99.8

5,7

OA/% 97.3 97.0 93.7 97.5 97.5 92.4 98.6
KAPPA 0.966 0.962 0.920 0.968 0.968 0.904 0.983
UA/% 99.1 99.8 99.3 99.8 99.8 97.5 99.5
PA/% 99.3 100.0 99.6 99.8 99.8 97.5 99.5

6,8

OA/% 92.7 93.3 93.7 93.6 97.8 98.1 98.4
KAPPA 0.907 0.915 0.920 0.918 0.972 0.976 0.980
UA/% 97.6 99.5 99.3 99.8 100.0 99.1 99.8
PA/% 99.6 100.0 99.1 98.9 100.0 98.7 100.0

Schemes 2 and 4 added optimal texture features on the basis of Schemes 1 and 3, with an overall classification
accuracy improvement of 4.3% during the jointing stage, 3.8% during the overwintering stage, 3.6% during the heading
stage, 1.5% for the whole phenological period, and 1% during the milky-ripe stage, and with a reduction of 5% and 3.3%
during the seedling stage and reviving stage respectively. Schemes 5 and 7 added optimal polarization features on the
basis of Schemes 1 and 3, with an overall accuracy improvement of 5.2% for the whole phenological period, 4.3% during
the jointing stage, 3.8% during the heading stage, 3.6% during the overwintering stage, and a slight increase of only 0.5%
during the seedling stage, with a reduction of 4.4% and 3.5% during the milky-ripe stage and reviving stage respectively.
Schemes 6 and 8 added both optimal polarization and texture features on the basis of Schemes 1 and 3, with the largest
overall accuracy improvement of 5% for the whole phenological period, 4.1% during the heading stage, 1.3% during the
milky-ripe stage, and only 0.4% during the jointing stage, with a reduction of 4.1%, 3.5%, and 0.1% during the seedling
stage, reviving stage, and overwintering stage respectively. It can be concluded that the inclusion of texture features,
polarization features, or both separately enhances the overall accuracy during the entire phenological period and heading
stage to varying extents, whereas the overall accuracy during the reviving stage diminishes by 3%, irrespective of the
addition of texture features, polarization features, or both. By ignoring changes with fluctuations of less than one percent,
it can be considered that the optimal polarization features have no effect on extracting winter wheat information during
the seedling stage, and adding both types of optimal features simultaneously has no effect on extracting winter wheat
information during the overwintering and jointing stages.

This study examines the effects of various phenological stages on the extraction of winter wheat data from distinct
feature sets, with the optimal phenological stages for each scheme presented in Table 7. Schemes 1, 2, 5, and 6 are
comparative schemes for individual phenological stages. Scheme 6 has the highest overall classification accuracy of
98.1% for the milky ripe stage after adding all features. Schemes 3, 4, 7, and 8 are comparative schemes for the entire
phenological stage. When optimal polarization features are selected, Scheme 7, which does not add optimal texture
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features, has the best overall classification for the entire phenological stage. The overall classification accuracy of Scheme
8, which adds optimal texture features for the entire phenological stage, is slightly lower, but this difference can be
ignored. However, at this time, the producer accuracy of winter wheat is the best.

This paper selects the best classification scheme from scheme 6 of full-feature milk maturity, scheme 7 of full
phenological period, and scheme 8 of full-feature full phenological period. The classification results of the three are
shown in Figure 6. It is obvious that the biggest difference lies in the identification of land types in the central and eastern
regions of the city. In Figure 6a, this area is identified as winter wheat. In Figure 6b, it is divided into water body types,
while the central and eastern regions of Hebi are generally residential areas and farmland. Scheme 7 of full phenological
period is excluded. In Figure 6c, it is divided into other vegetation types that are not winter wheat.

Table 7. Optimal classification phenological period

Plan Optimal classification phenological period Overall Accuracy (%)
1 Rejuvenation 97.2
2 Milk ripening period 97.8
3 Full phenological period 93.4
4 Full phenological period 94.9
5 Jointing stage 97.5
6 Milk ripening period 98.1
7 Full phenological period 98.6
8 Full phenological period 98.4

Henan Modern Agricultural Big Data Industry Technology Research Institute Co., Ltd. has established a 5G intelligent
agricultural industry demonstration base (Figure 6d) in Shiqiao Village, Qiaomeng Town, Qi County, Hebi City. The test
area is flat and contiguous, with clay soil type, good irrigation conditions, with the main planting mode of winter wheat
and summer corn rotation. To further select the optimal scheme, the classification results of scheme 6 full-feature milky-
ripe period and scheme 8 full-feature full phenological period extracted from this experimental field area were studied. In
Figure 6f, the winter wheat area that was intended to be red was erroneously segmented into blue water bodies and green
non-winter wheat vegetation. Relatively speaking, the misclassification of full-feature milky-ripe period was lower.
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Fig. 6 Classification result plot

As shown in Figure 7, a linear fitting is made between the extracted area and the winter wheat planting area in Hebi
Statistical Yearbook 2022. The R2 of the linear fit for the entire phenological period exceeds that of the milk maturity
period by 0.0022, representing less than one percent, thus indicating that the two are nearly equivalent.

Fig. 7 Comparison of winter wheat planting area and extraction area in official statistics of each county

The winter wheat planting area (Table 8) was extracted from the classification results corresponding to Figure 6a and
Figure 6c, respectively, and the extraction result of the full-featured milky-ripe stage was closer to the statistical yearbook
data. Heshan District’s agricultural pattern, characterized by minor grain crops and forestry, is shaped by the extensive
barren hills and mountains of the Tai-Hang Mountains, resulting in a diverse array of cultivated crops and a complex
planting structure. There are many fragmented plots of winter wheat with unclear phenological characteristics, resulting in
unsatisfactory extraction results. The extraction effect in Shancheng District was the best. It belongs to the shallow hilly
landform with an average altitude of 187 m. The agricultural land area accounts for 66.45% of the total, and wheat, corn,
soybeans, peanuts and vegetables are mainly grown. Compared with Heshan District, the planting structure in Shancheng
District is simpler, which can better extract the wheat cultivated area.

Table 8. Extraction results of winter wheat area in each county and district of Hebi City

Region Heshan Shancheng Qibin
Jun

County Qi County Hebi City
full-feature milk maturity (km2) 8.4 34 94.1 676.8 199.3 1012.6

Proportion of area (%) 6.35 25.19 27.09 71.42 34.57 47.34
full-feature full period (km2) 5.6 20.5 59.5 399.8 162.4 647.8

Proportion of area (%) 4.19 15.19 17.13 42.18 28.16 30.28
Statistical yearbook data (km2) 17.9 34.5 87.7 555.6 204.9 900.6

Proportion of area (%) 12.88 17.51 25.87 57.52 36.14 40.79

3.3. Mapping of winter wheat planting distribution in Hebi City in 2021

Based on the results, the milky-ripe stage in Scheme 6 was selected as the optimal phenological period for extracting
winter wheat planting information in Hebi City. Therefore, the distribution map of winter wheat planting area in 2021 was
obtained (Figure 8a). We generated the slope distribution map (Figure 8b) based on the ASTER GDEM 30m DEM data
obtained from the Geographic Spatial Data Cloud Platform in ARCGIS 10.8 software. According to Figure 7b, the slope
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values of Heshan District, Qibin District and the west of Qi County are relatively large, which are mostly mountainous
areas and not suitable for planting winter wheat. However, the planting areas of winter wheat in the central and eastern
parts of Hebi City have gentler slopes mostly in the form of plains. As shown in Figure 7a, winter wheat is planted in
large areas in the middle and east of Hebi, with Jun County having the widest planting range and the largest planting area,
followed by Qi County, and Heshan District having the smallest winter wheat planting area, which is consistent with the
results extracted from the classification results.

Fig. 8 Distribution map and slope map of winter wheat in Hebi City in 2021

4. Discussion

In GEE platform and according to the NDVI change curve and actual agricultural conditions in the study area, this
paper integrates Sentinel active and passive remote sensing data, and defines the whole phenological phases of winter
wheat, including seedling stage, overwintering stage, green-up stage, jointing stage, heading stage, and milky stage,
According to the topographic, spectral, and vegetation index feature, this paper explores the impact of texture and
polarization features on area extraction accuracy (Table 9). Meanwhile, six phenological stages were identified as the
control experiments with the whole phenological stage, to explore the optimal phenological stage for extracting winter
wheat areas (Table 7).

Table 9. Effects of texture and polarization characteristics on winter wheat extraction

Compare plans 2,4-1,3 6,8-5,7 5,7-1,3 6,8-2,4
Feature Texture Texture Polarization Polarization

Seedling stage (%) -5.0 -4.6 +0.5 +0.9
Overwintering period (%) +3.8 -3.7 +3.6 -3.9

Reviving stage (%) -3.3 0 -3.5 -0.2
Jointing stage (%) +4.3 -3.9 +4.3 -3.9
Heading period (%) +3.6 +0.3 +3.8 +0.5

Milk ripening period (%) +1.0 +5.7 -4.4 +0.3
Full period (%) +1.5 -0.2 +3.5 +5.2

During the seedling stage, the overall classification accuracy decreased when texture features were included. This may
be attributed to the lack of distinct texture characteristics in winter wheat at this stage. In the overwintering and jointing
stages, both texture and polarization features enhanced the accuracy of winter wheat extraction. However, combining
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these two feature types led to redundancy. At the greening stage, incorporating either texture features, polarization
features, or both reduced the overall accuracy from 97.2% to 93.9% and 93.7%, respectively (Table 6). This suggests that
topographic, spectral, and vegetation index features alone were sufficient for distinguishing land cover types during this
stage, and additional features detracted from classification accuracy. In the heading stage, adding optimized texture
features or optimized polarization features individually improved extraction accuracy, while combining them provided
only marginal improvement. At the milky-ripening stage, optimized texture features enhanced the overall accuracy of
winter wheat extraction. Across the entire phenological period, optimized polarization features consistently improved
extraction accuracy, which is consistent with the research results of Shen Yangyang (Shen et al., 2024).

The primary focus of this study was the integration of optical and radar remote sensing data. The complete
phenological period was divided into six distinct phases based on the NDVI time-series curve. The most accurate
phenological extraction was identified by comparing results across the entire phenological period. The study also
demonstrated the effectiveness of feature optimization by excluding features with a Pearson correlation coefficient
absolute value exceeding 0.8. The limitation of this study is that it concentrated solely on determining the optimal
phenological period and the best extraction protocol for winter wheat, without addressing the distinction of winter wheat
from other crop types within the optimal extraction period.

For future research, we will focus on two main directions. First, we aim to improve the method for distinguishing
winter wheat from other crop types during optimal phenological periods. We plan to incorporate more dimensional
features, such as hyperspectral characteristics and crop physiological parameters. Advanced machine learning algorithms
(Zhao et al., 2022), like convolutional neural networks, will be explored to identify subtle differences in data and enhance
classification accuracy. Second, we will expand the study area to test our method in regions with different climates,
terrains, and more complex cropping systems. This will validate the method's adaptability and robustness. Regional-
specific adjustments will be made based on local characteristics. Additionally, we plan to conduct dynamic monitoring
studies. These will track winter wheat growth throughout its lifecycle and examine interactions with neighboring crops.
The goal is to provide timely, comprehensive decision support for precision agriculture management.

5. Conclusion

The key findings of this study are summarized as follows:

(1) Feature optimization was performed on the 35 constructed features. The overall accuracy of all schemes exceeded
90%, demonstrating that feature optimization based on the Pearson correlation coefficient can enhance overall
classification accuracy.

(2) The incorporation of polarization features improved the overall classification accuracy during the seedling,
overwintering, jointing, heading, and full phenological stages, with the most significant improvement observed in the full
phenological stage. The addition of texture features enhanced the overall classification accuracy during the overwintering,
jointing, heading, and milky-ripening stages, particularly in the jointing stage. Moreover, the combined addition of both
texture and polarization features improved the overall classification accuracy during the heading and full phenological
stages, with the full phenological stage showing the most notable increase.

(3) The optimal classification scheme for extracting winter wheat planting information in Hebi is Scheme 6, which
includes both preferred texture and polarization features during the milky-ripening stage. This scheme achieved an overall
accuracy of 97.8% and a Kappa coefficient of 0.972.
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