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Abstract The existing traditional dam seepage pressure prediction models have
problems such as falling into local optimum. The sparrow search algorithm (SSA)
was improved as ISSA using both methods of nonlinear Sine Cosine optimization
algorithm and adaptive producer and scrounger ratio. We combined the
Bidirectional Long Short-Term Memory (BiLSTM) neural network model with
ISSA to develop the ISSA-BiLSTM seepage pressure prediction model. The
critical feature factors were extracted based on LightGBM to construct the input
layer for seepage pressure prediction. The results show that the ISSA-BiLSTM
model's fitting outcomes are generally consistent with the observed changes in
seepage pressure observations, achieving an R2 of 0.987. In comparison to SSA-
BiLSTM and BiLSTM, the model exhibits a substantial reduction in errors,
decreasing by approximately 20% and 30%, respectively. This model can provide
technical support and insights for accurately predicting dam seepage, contributing
to the advancement of this field.

1. Introduction

Dams play a crucial role in water resource management, irrigation, power
generation, and flood control (Liu et al. 2024). The high-quality, efficient, and safe
construction and long-term efficient and safe operation of dams are crucial to
national welfare and people's livelihoods (Li, et al. 2022). More than 100,000 dam
projects have been built around the world (Song et al., 2023). Since the initiation of
economic reforms and opening-up policies, along with the development of
technological capabilities and improvements in the standard of living, the scale and
quantity of dams in China have continuously expanded. According to statistics, the
number of dams in operation has exceeded 23,000, accounting for 40.6% of the
global total (For dams with a height exceeding 15 meters, or dams with a height
greater than 5 meters and a reservoir capacity exceeding 3 million cubic meters)
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(Huang et al., 2021). Presently, many dams have been in service for numerous years, with some approaching or
surpassing their design lifespan, placing them in a state of "ailing" or "high-risk" conditions. Compounded by frequent
extreme weather events in recent years, potential hazards to the safe operation of dams have increased. Seepage issues
represent a significant factor affecting the safety of dams (Chen et al. 2024; Li et al. 2024). According to statistics, dam
failures, particularly those involving earth-fill dams, are often attributed to permeation-induced deformations. Between
2000 and 2018, 25.72% of dam failure cases in China were linked to seepage issues (Li et al. 2021). Given the increasing
visibility of risks associated with a considerable number of dams in operation, research on dam monitoring and safety
diagnostic technologies has garnered significant attention (Wang et al. 2018). Seepage, as a direct indicative factor of a
dam's operational safety, has become a focal point and hotspot in this field (Beiranvand & Rajaee, 2022). Addressing dam
seepage issues, uncovering their temporal patterns, understanding their seepage behaviors, and conducting predictive
analyses are conducive to comprehensively grasping the engineering operation status and reducing the probability of
failures. This research holds substantial practical significance in the current context where the risks associated with a
considerable number of dams in operation are gradually becoming apparent (Li et al. 2023).

Numerous factors influence seepage pressure in dams, including upstream and downstream water levels, precipitation,
temperature, etc. The study of dam seepage pressure prediction began in the previous century, and with the rapid
development of artificial intelligence technology, various models have been employed for dam seepage pressure
prediction (Wen et al. 2023), such as neural network models, support vector machine models, extreme learning machine
models, among others. Among them, bidirectional long short-term neural networks have been widely applied due to their
outstanding temporal processing capability and good fitting performance (Wang et al. 2023). Scholars continuously
improve these models using two main approaches.

The first approach involves coupling other algorithms into the models. For instance, Qiu et al. (2016) utilized genetic
algorithms to optimize backpropagation neural networks, Zhang et al. (2020) coupled wavelet analysis and neural network
technology to establish a seepage pressure prediction model for earth-rock dams. Miao et al. (2019) introduced cloud
model coupling with artificial fish swarm algorithm, addressing deficiencies in BP neural network weights and thresholds,
constructing the CM-AFSA-BP prediction model. Yue et al. (2020) incorporated upstream and downstream water depth
components, time components as input layers, combined with convolutional neural networks and long short-term memory
neural networks to establish a dam seepage prediction model. Li et al. (2023) enhanced the local search capabilities of
GBO by introducing cross operators and nonlinear parameters, proposing the IGBO-ELM model combining Improve
Gradient-based optimizer and Extreme Learning Machine. Zhang et al. (2021) employed Extreme Gradient Boosting
(XGBoost) to predict seepage in the dam body. Hybridizing grey wolf optimization (HGWO), which combines
Differential Evolution (DE) with Grey Wolf Optimization (GWO), along with five-fold cross-validation, was utilized to
optimize the hyper-parameters of XGBoost. Ishfaque et al. (2022) utilized Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) as time series algorithms for seepage flow prediction at the Tarbela Dam in Pakistan. Wang
et al. (2022) established a seepage pressure prediction model for dams based on Grey Self-Memory Theory, utilizing the
Grey Model GM (1,1) as the dynamic core. In the Grey Self-Memory model, information from multiple monitoring values
is fully utilized.

The second approach involves filtering and processing seepage influencing factors at the input layer. Chen, et al. (2020)
starting from the factors affecting dam seepage, applied multi-population Jaya algorithm to achieve adaptive optimization
of the kernel extreme learning machine (KELM), obtaining a seepage prediction model. Qin et al. (2018) initially used a
stepwise regression method to analyze the significance of 11 seepage influencing factors, using significant factors as input
layers for seepage prediction in a wavelet neural network. Liu et al. (2020) emphasized the correlation between seepage
flow and its influencing factors, selecting input layers based on this correlation, and introduced a biogeography-based
optimization algorithm (BBO) to construct a seepage pressure prediction model. Wang et al. (2022) initially employing
principal component analysis (PCA) for dimensionality reduction of seepage influencing factors, then enhanced the global
exploration capability of long short-term neural networks using ant lion optimizer (ALO), establishing an ALO-LSTM-
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based seepage pressure prediction model. Application instances indicate high fitting accuracy of the model, with an R2

reaching 0.98. Liu et al. (2023) employed the HTRT (hydrostatic-thermal-rainfall-time) model to identify the time-series
influencing factors of seepage flow. The HTRT model nested the Random Forest algorithm to establish a seepage flow
prediction model for dams. The MIC algorithm was utilized for dual purposes of time delay analysis and sensitivity
analysis. The aforementioned research has achieved notable improvements in enhancing model prediction accuracy and
stability.

While the aforementioned studies have made progress in dam seepage pressure prediction, challenges such as
susceptibility to local optima and low prediction efficiency persist (Shao et al. 2023). In light of these issues, this paper
attempts to address them by introducing a multi-strategy improved Sparrow Search Algorithm (ISSA) to overcome
deficiencies in global optimization and convergence speed. The bidirectional long short-term neural network (BiLSTM) is
employed to construct the input layer for seepage pressure prediction based on the correlation between seepage
influencing factors and seepage values, as well as its inherent temporal patterns. The LightGBM technique is introduced
to extract critical feature factors. Utilizing the improved Sparrow Search Algorithm (ISSA), the parameters of the
BiLSTM model are optimized. The objective is to establish an efficient and accurate dam seepage prediction model.
Finally, the performance of the improved seepage prediction model is compared with a benchmark seepage prediction
model, and an analysis is conducted to evaluate the accuracy of the enhanced seepage prediction model.

2. Materials and Methods

2.1. Multiple-Strategy Collaborative Improvement Sparrow Search Algorithm

2.1.1. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) (Xue, et al., 2020) is a novel multi-population algorithm inspired by the foraging
and predator avoidance behaviors of sparrows. SSA exhibits advantages such as fast convergence speed, strong
optimization capability, and stability (Yang et al., 2024). When coupled with the Bidirectional Long Short-Term Memory
Neural Network (BiLSTM), it enhances the overall optimization ability and computational efficiency of the model.
During foraging, a portion of sparrows are responsible for providing foraging areas and directions, while the rest follow
the former for foraging. Simultaneously, when an individual sparrow detects danger, it emits an alarm signal, prompting
the population to immediately engage in anti-predatory behavior. Within the sparrow population, producers offer foraging
directions to other individuals; scroungers accompany producers in foraging activities; and sentinels are tasked with
monitoring and alerting (Zhou et al., 2024). In SSA, sparrows are categorized into three roles: producers, scroungers, and
sentinels.

The update formula for the position of producers is as follows:
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where ,
t
i jx represents the position of the ith sparrow in the jth dimension, where t is the current iteration count, T is the

maximum iteration count, α is a random number belonging to the interval (0,1], R2 is the warning value (0< R2 ≤1), ST is
the safety value (0< ST ≤1), Q is a random number following a normal distribution, L represents a 1 × dim matrix, where
dim denotes the dimension value.
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The update formula for the followers' positions is as follows:
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where worst
tx represents the worst position of the producers globally at the sub-iteration, best

tx represents the optimal
position of the producers, and A is a 1 × D dimensional matrix.

The updated positional coordinates of the sentinel are as follows:
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where fi, fw, fg represent the current fitness of the sparrow, and takes values for the minimum and maximum fitness; β
denotes the step size control parameter; K stands for a random number; ε is a sufficiently small value to prevent division
by zero.

2.1.2. The Multi-Strategy Cooperative Improved Sparrow Search Algorithm

While the Sparrow Search Algorithm (SSA) demonstrates favorable performance, it tends to encounter challenges
related to local optima in later stages, with certain deficiencies in optimization accuracy and stability (Xiong et al., 2022).
In order to enhance SSA's optimization effectiveness for BiLSTM and elevate model’s prediction precision, a novel
approach is introduced herein. This approach involves the formulation of a Multi-Strategy Cooperative Improved Sparrow
Search Algorithm (ISSA) aiming at synergistically refining SSA through multiple strategies. The essence lies in
compensating for the rigid defects of the original algorithm through a dynamic parameter adjustment mechanism, and its
characteristics of low computational overhead and high environmental adaptability enable it to demonstrate significant
advantages in optimization tasks targeting complex models such as BiLSTM. Compared to other strategies such as
Cauchy mutation and Tent chaotic mapping, this combination achieves a delicate exploration-exploitation balance while
ensuring algorithmic efficiency, providing a more reliable optimization foundation for time series prediction.

(1) The coefficient for the adaptive producer and scrounger ratio.

The proportion of producers to scroungers in the SSA remains constant throughout the entire optimization process.
Consequently, during the early stages of optimization, the producers' proportion is relatively low, resulting in suboptimal
global search performance. Conversely, in later stages, the number of producers becomes excessive when additional
scroungers are more pertinent for enhancing local optimization capabilities. To address these shortcomings, an adaptive
strategy is introduced involving coefficients for the discovery-to-scroungers ratio. This strategy aims to increase the
proportion of producers during the early optimization stages and, in the later stages, dynamically adjust the number of
scroungers, reducing the number of producers adaptively. This adaptive adjustment transitions the optimization focus
from global exploration to precise local search, thereby improving the convergence accuracy of the SSA.
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(1 )sNum r N  
where pNum represents the number of producers, sNum denotes the number of scroungers, b signifies the ratio between

producers and scroungers, and k is the perturbation deviation factor.

（2）Nonlinear Sine Cosine Optimization Algorith

10.63221/eies.v1i01.1-16

（6）

m

In the early iterations of SSA, as the number of iterations increases, each dimension of the scroungers tends to enlarge,
while the dimensions of the producers decrease. This results in a continuous reduction of the search space, making it
susceptible to local optima. To address this issue, a Nonlinear Sine Cosine Algorithm is introduced to enhance the step-
size search factor '

1  r and the followers' position update formula (eq. 7). The transformation curve of '
1  r is illustrated in

Figure 1, and the formula for '
1  r is provided in (eq. 8). The improvement ensures a slow decrease in the early stages when

the weights are relatively small, allowing producers to maintain larger values and facilitating global search. In the later
stages, when the weights increase, the decrease rate accelerates, leading to an increase in the number of scroungers. This
enhancement contributes to improved local optimization capabilities, expediting the convergence to the optimal solution
(Li, et al., 2022).
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2.2. The ISSA-BiLSTM Seepage Pressure Prediction Model

2.2.1. Bidirectional Long Short-Term Memory Neural Network Model

The Long Short-Term Memory (LSTM) neural network (Hochreite et al., 1997) was proposed to address the limitations
of traditional neural network techniques, specifically the "vanishing or exploding gradient" issue. LSTMs excel in
addressing predictive or classification problems related to time-series data. There are two main variants: the Bidirectional
Long and Short-Term Memory network model (BiLSTM) and the unidirectional Long and Short-Term Memory network
model (LSTM). However, the unidirectional LSTM has certain limitations in terms of memory capacity. In this study, a
more comprehensive approach is adopted by selecting the Bidirectional Long Short-Term Memory Neural Network
Model, which comprises LSTM units in both forward and backward directions, as shown in Figure 1. The input sequence,
denoted as X = (x1, x2, ..., xt), is processed through the network, and the output layer is connected to both the forward and
backward layers, as illustrated in Figure 1.

Fig. 1 The schematic diagram of the Bidirectional Long Short-Term Memory network model structure
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2.2.2. Data Selection and Processing

In accordance with the overall sample, a random selection of 15% to 20% of the total samples is chosen as the testing
dataset, while the remaining 80% to 85% constitutes the training dataset. Given the significant variations in the input
parameter ranges for the infiltration prediction model and the disparate physical dimensions of different factors, it is
essential to normalize the data of each indicator in the input layer of the infiltration prediction model. This paper employs
the Min-max method, as indicated in (eq. 9).

min

max min

i i
i

i i

x xy
x x




 （9）
where yi represents the normalized value, xi denotes the original data of the monitoring variable, ximax is the maximum

value in the long sequence monitoring dataset, and ximin is the minimum value in the long sequence monitoring dataset.

2.2.3. Model Parameters and Input Variables

The seepage pressure head of a dam is mainly influenced by the time-varying characteristics of factors such as
upstream and downstream water levels, temperature, rainfall, and the material properties of the dam body (Gu & Wu,
2006). In light of this, this paper establishes the initial input layer for seepage pressure prediction from both feature and
time perspectives.

The expression for the seepage pressure effect quantity in the dam is as follows:

= H T P        （10）
where δ represents the seepage pressure effect quantity in the dam, δH represents the water level component, δP represents
the rainfall component, δθ represents the time-dependent component, and the rules for determining each component are as
follows.

(1) H : Considering the significant impact of reservoir water level on dam seepage and the existence of lag
effects (Pang et al. 2016; Shi, et al. 2018), it is essential to not only consider the current upstream water level but
also to take into account the variations in water level in the days preceding the monitoring date. In this study, the
mean upstream water level for the 3 days preceding the monitoring date and the mean upstream water level for days
4-7 preceding the monitoring date are considered.

1 3 4 7=( , , )H uh h h   （11）

where hu represents the upstream water level of the reservoir on the monitoring date, 1 3h  represents the average

upstream water level of the reservoir in the 3 days preceding the monitoring date, 4 7h  represents the average upstream
water level of the reservoir in the 7 days preceding the monitoring date.

(2) T : The mechanism of temperature component on the seepage effect in dams lies in the thermal
expansion and contraction of the dam body and bedrock caused by temperature changes, affecting the permeability
coefficient of the soil. Generally, the permeability coefficient of soil decreases with an increase in temperature,
exhibiting periodic variations. In this study, the representation of the temperature component is adopted from
(Wang et al. 2022).

2 2=(sin , cos )
365 365

T
it it  （12）

(3) P : The impact of the rainfall component on the seepage characteristics of the dam involves two aspects
(Yu et al. 2010). One part is the increase in water level caused by surface runoff generated by rainfall flowing into
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the reservoir. The other part is the direct infiltration of rainfall into the dam body, influencing the unsaturated
seepage field and causing changes in the seepage pressure values.

1 3 4 7=( , , )P P P P   （13）

where P represents the rainfall amount on the monitoring date, 1 3P  represents the average rainfall amount in the 3 days

preceding the monitoring date, and 4 7P  represents the average rainfall amount in days 4-7 preceding the monitoring date.

(4)  : The effects of variables such as water level and rainfall on the seepage pressure values in dams
exhibit a lag. Here, these effects are transformed into time-dependent components, typically expressed by the
following equation:

= ( , ln )   （14）
where θ represents the number of days from the monitoring date to the reference date divided by 100.

Thus, from an overall perspective, the initial input layer variables for the seepage pressure prediction model are
represented as in (eq.15):

1 3 4 71 3 4 7
2 2=( , , , , , , cos ,sin , ,ln )
365 365u
it ith h h P P P       （15）

2.2.4. Dimensionality reduction of input variables based on LightGBM technology

The variation in dam seepage pressure exhibits strong regularity, influenced by various factors such as rainfall,
temperature, water level, and time-dependent factors at both feature and time levels (Zhang et al., 2021). Section 2.3 has
preliminarily determined the input layer of the seepage pressure prediction model. However, if all the above factors are
input as feature parameters into the seepage pressure prediction model, it may lead to excessively high data
dimensionality, redundant feature information, and a decrease in prediction accuracy. To address this, LightGBM (Light
Gradient Boosting Machine) technology is introduced (Yuan et al. 2022) to perform dimensionality reduction on the input
layer of the seepage pressure prediction, accurately extracting essential features and eliminating redundant factors.

2.2.5. The steps and workflow for implementing the prediction model are as follows:

This article utilizes MATLAB (2022a) to implement the construction of the ISSA-BiLSTM seepage pressure prediction
model and the training and prediction of the seepage pressure model. The implementation steps are shown in Figure 2, and
the specific process is as follows:

Step 1: Normalizing the monitoring data of dam seepage and influencing factors.

Step 2: Introducing the LightGBM technology to perform dimensionality reduction on the model's input layer,
extracting important features, and partitioning the dataset into training and testing sets.

Step 3: Setting parameters such as the sparrow population size, maximum iteration count, etc. Initializing the sparrow
population.

Step 4: Constructing the BiLSTM seepage prediction model, determining the optimization range of its parameters.

Step 5: Utilizing (eq. 5) and (eq. 6) to adaptively adjust the number of producers and scroungers. Employing a
nonlinear Sine Cosine optimization to enhance the update mechanism of the improved producer population. Finally,
using the nonlinear positive cosine algorithm to improve the scrounger positions.
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Step 6: Checking if the maximum iteration count has been reached. If so, outputting the optimal parameters. If not,
returning to Step 5 to continue the optimization process.

Step 7: Using the optimized parameters from ISSA to construct the seepage pressure prediction model with BiLSTM
and performing predictions.

Fig. 2 Application steps of ISSA-BiLSTM seepage pressure prediction model

3. Results and Discussion

The panel-stacked rockfill dam is classified as a Grade I large-scale (1) project. As shown in Figure 3,the dam crest
elevation is 413.8 m, the maximum dam height is 99.8 m, the crest width is 10 m, the crest length is 540.46 m, and an L-
shaped reinforced concrete wave wall with a height of 4.0 m is installed on the upstream side of the dam crest. The
reservoir's normal storage water level is 410 m³, with a storage capacity of 11.076 million m³. A comprehensive
prototype dam monitoring system has been implemented at this reservoir, consisting of deformation monitoring, seepage
monitoring, and environmental quantity (rainfall, reservoir water level) monitoring. For seepage monitoring, piezometers
are embedded and installed, with a total of 4 piezometers arranged at the dam foundation, and data collection intervals
range from 1 to 3 days.
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Fig. 3 Layout Diagram of Dam Base Seepage Pressure Monitoring

3.1. The simulation results and analysis

Using the actual measurement data of the panel-stacked rockfill dam from the past 10 years as a case study, an analysis
was conducted using the ISSA-BiLSTM prediction model. The raw feature data for the input and output layers are
presented in Table 1.

Table 1. Raw Feature Data for Input and Output Layers

Parameter Names (Units) Minimum Value Maximum Value Mean Value Median

Input Layer

uh （m） 385.51 409.70 405.38 406.08
1 3h  （m） 385.52 409.50 405.35 405.95
4 7h  （m） 385.52 409.49 405.33 405.83
P （mm） 0 95.50 1.85 0

1 3P  （mm） 0 74.10 1.83 0

4 7P  （mm） 0 82.38 1.76 0
T 1 -1.00 1.00 0.02 0.03
T 2 -1.00 1.00 -0.03 -0.06

ln   -0.84 3.47 2.56 2.81
  0.43 32.36 16.54 16.55

Output Layer Permeability Value（mm） 318.72 319.79 319.14 319.12

By employing LightGBM technology to perform dimensionality reduction on Table 1, individual importance scores
were obtained for each feature factor. The importance scores for each feature factor are presented in Table 2. From the
table, it is evident that the most influential feature factor on the seepage pressure value is the upstream water level on the
same day, followed by the rainfall on the same day. To extract important features, we effectively eliminated redundant
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information and parameters, and based on the importance scores of feature factors, we sequentially added them to the
ISSA-BiLSTM seepage pressure prediction model, with the root mean square error (RMSE) as the evaluation metric.

Table 2. The importance ranking of 11 permeability influencing factors based on LightGBM technology.

Importance ranking. Permeability influencing factors. Feature factor importance scores.
1 uh 55.64
2 P 47.38
3 1 3h  32.56
4 1 3P  30.23
5 ln   26.17
6 T 1 15.13
7 T 2 13.25
8 4 7P  5.15
9 4 7h  3.28
10   2.69

*The higher the importance score of significant factors, the greater the significance of the corresponding factors,
indicating a more pronounced impact on the percolation behavior.

Figure 4 depicts the variation of root mean square error (RMSE) with different numbers of significant factors. From the
graph, it is observed that as the number of significant factors inputted into the model accumulates from 1 to 7, the RMSE
exhibits an approximately linear decreasing trend. When significant factors ranked 8th to 10th in importance are
introduced into the model, the RMSE shows little change. This suggests that the first seven significant factors exert a
significant influence on prediction accuracy, whereas the 8th to 10th significant factors have minimal impact on predicting
permeability values. In light of this observation, the model identifies upstream water level (hu), daily precipitation (P),

average upstream water level for the previous 1-3 days ( 1 3h  ), average precipitation for the previous 1-3 days ( 1 3P  ),
time lag (lnθ), temperature component (δT1), and temperature component (δT2) as the input layer for permeability
prediction.
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Fig. 4 The graph depicts the curve of the root mean square error as a function of the number of characteristic factors

The training samples of prolonged-duration permeability data are fitted using the ISSA-BiLSTM permeability
prediction model. The simulation analysis environment involves an I7-7700U processor with a clock speed of 3.60 GHz,
16GB of RAM, and a Windows 10 operating system. Concurrently, the sparrow population is set at 50, the number of
sample groups is set at 300, and the maximum iteration count is set at 1000. Figure 5 illustrates the fitting results of the
ISSA-BiLSTM model. As depicted in Figure 5, the fitting curve of the current prediction aligns closely with the observed
variations in permeability values. The coefficient of determination (R2) is 0.987, indicating that the model effectively
captures the temporal and feature information of long sequences of permeability values, resulting in a high fitting
accuracy. The root mean square error (RMSE) is 0.0993, the mean absolute error (MAE) is 0.0725, and the mean absolute
percentage error (MAPE) is 0.0227. These metrics collectively underscore the model's capability to accurately predict
prolonged-duration permeability values.

Fig. 5 The comparison graph of the actual and fitted values for the training set of the ISSA-BiLSTM model

3.2. Comparison analysis

To validate the superiority and permeability prediction accuracy of the ISSA-BiLSTM model, SSA-BiLSTM, and
BiLSTM models were selected as controls. Figure 6 illustrates the comparative results of the predicted values and actual
values for the ISSA-BiLSTM (Figure 6(a)), SSA-BiLSTM (Figure 6(b)), and BiLSTM(Figure 6(c)) models with 100
sample sets. As observed from the graph, the prediction curve of ISSA-BiLSTM aligns more closely with the observed
curve, indicating a better match between predicted and actual values. Following in precision is SSA-BiLSTM, with
BiLSTM exhibiting the lowest predictive accuracy.
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(a) (b) (c)

Fig. 6 The comparison graph of predicted values and actual values for different permeability prediction models

Figure 7 displays the statistical results of RMSE, MAE, and MAPE for the ISSA-BiLSTM, SSA-BiLSTM, and
BiLSTM models. As evident from the graph, the ISSA-BiLSTM model exhibits higher accuracy, with RMSE, MAE, and
MAPE values of 0.10%, 0.07m, and 0.02m, respectively. Compared to the BiLSTM model, these values are reduced by
31.9%, 35.7%, and 35.7%, respectively. The SSA-BiLSTM model shows a smaller improvement, with reductions of only
10.8%, 8.4%, and 8.4%. This indicates that SSA contributes to some optimization of BiLSTM but is not sufficient. ISSA
achieves the best optimization effect on BiLSTM, with a substantial decrease in errors, with all three types of errors
reduced by over 30%.

Fig. 7 The comparative graph of the statistical results for three types of errorsamong the three prediction models.

4. Conclusion

This study addresses the challenges of traditional seepage prediction models for dams, including susceptibility to
local optima and inefficient prediction efficiency. Various strategies were introduced to enhance the baseline sparrow
search algorithm, and the resulting ISSA was coupled with a Bidirectional Long Short-Term Memory (BiLSTM)
neural network to form the ISSA-BiLSTM seepage prediction model. The model was applied to predict seepage in a
panel dam, and simulation results indicate improved performance of the enhanced seepage prediction model. The key
conclusions are as follows:
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1. Improvement of Sparrow Search Algorithm (ISSA): To overcome limitations of Sparrow Search Algorithm
(SSA), such as a tendency to be engaged in local optima and slow convergence, adaptive producer and scrounger ratio
coefficients and a nonlinear Sine Cosine optimization were introduced to cooperatively improve SSA, resulting in
ISSA. This enhanced algorithm demonstrated improved overall performance, providing effective support for accurate
dam seepage prediction.

2. Feature Selection and Model Input Layer Establishment: The study initially identified seepage influencing
factors and established the input layer from both temporal and feature perspectives. The LightGBM technique was
then introduced to reduce the dimensionality of feature factors, selecting seven significant factors (upstream water
level for the current day, daily precipitation, average upstream water level for the previous 1-3 days, average
precipitation for the previous 1-3 days, time lag, temperature component 1, and temperature component 2) as the input
layer for the seepage prediction model.

3. ISSA-BiLSTM Seepage Prediction Model: The ISSA algorithm was employed for parameter optimization in the
BiLSTM model, resulting in the construction of the ISSA-BiLSTM seepage prediction model. When applied to
predict seepage values in the selected engineering case, the model demonstrated a good fitting effect with an R2 of
0.987. Moreover, the RMSE, MAE, and MAPE were 0.10%, 0.07m, and 0.02m, respectively. Compared to BiLSTM
and SSA-BiLSTM, the errors were significantly reduced by over 30% and 20%, respectively.

In summary, this study demonstrates that the ISSA-BiLSTM seepage prediction model effectively overcomes the
limitations of traditional models, offering valuable insights for accurate seepage prediction in dam engineering.

How to further improve the prediction accuracy of ISSA and its practical application effectiveness remains to be
further investigated.
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