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Abstract The HySpex hyperspectral data used in this study have a wide spectral
response range, narrow bandwidth, and high spatial resolution, and they can be
effectively applied to the extraction of mineral alteration information. We explore
how to extract effective information from remote sensing images through remote
sensing image classification technology and explore its utilization in geological
science. This study aims to verify the reliability and accuracy of alteration
information extracted by using a super-low altitude detection platform equipped with
powered delta wings mounted with HySpex hyperspectral sensors in the Yudai area
of the Kalatage district. Field data were collected and analyzed using Analytical
Spectral Devices (ASD), and the results were compared with those obtained from the
United States Geological Survey (USGS) spectral library. The analysis of the
geological background and HySpex hyperspectral data was enhanced by Minimum
Noise Fraction (MNF) transformation coupled with the Pixel Purity Index (PPI) to
extract endmembers of altered minerals, including chlorite and jarosite, from different
spectra (SWIR and VNIR) and spectral wavelengths. Additionally, two classification
methods, the Spectral Angle Mapper (SAM) and Support Vector Machine (SVM),
were applied to the data for effective mineral mapping. The best-performing method,
i.e.,, SVM, was validated using ground-truth information obtained during field
observations. The results from the classification methods revealed accuracies of
59.57% for SAM and 69.25% for SVM. The HySpex hyperspectral data obtained
using a super-low altitude detection platform proved highly effective for detecting
altered rock information. Thus, this approach has great potential for the rapid

identification of geological and mineralogical features, especially in complex terrains.

Keywords: Alteration extraction, field verification, endmember, reflection, delta

wing, low-altitude.
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1. Introduction

In mineral exploration, many techniques have been
applied to detect the presence of mineralization and
related altered rocks (Mathieu, M. et al. 2017). Remote
sensing technology offers a range of advantages, such as
wide coverage, high efficiency, short cycle duration, and
strong economic benefits, making it critically important
for pathfinders (Vincent, R.K. et al. 1997). Among these
advantages, the application of hyperspectral remote
sensing is particularly crucial due to its advanced
techniques and methods for mineral exploration and
mapping. Additionally, hyperspectral technology
exhibits significant diagnostic spectral features across
the electromagnetic spectrum, enabling the detection of
chemical composition and relative abundance of
minerals and deposits within rocks or geological
formations (Mathieu, M. et al. 2017, Filho,
A.P.C.S.A.C.R.D.S. etal. 2000, Salehi, S et al. 2017).

Our study focuses on the use of HySpex
hyperspectral data for mineral mapping in the Yudai
area of the Kalatage district, which has significant
potential for hosting diverse mineral types. Previous
researchers (Koerting, et al. 2017; Denk, M et al. 2015;
Baissa, R et al. 2011) have utilized HySpex
hyperspectral remote sensing for mineral mapping and
validated their results through laboratory analyses and
fieldwork (Mathieu, M. et al. 2017; Koerting, et al. 2017;
Denk, M et al. 2015; Baissa, R et al. 2011). This
approach provides reliable image-based information
through narrow, continuous spectral band estimations of
Earth’s surface materials. In geological exploration,
spectral absorption characteristics are used to infer
mineralogical composition, lithology, and quantitative
assessments of chemical or physical rock properties, all
of which can be derived from HySpex hyperspectral
images (Baissa, R et al. 2011).

The Yudai copper deposit, located in the western
part of the Kalatage district, is hosted by porphyritic
quartz diorite (Chen, L et al.2017; Molan, Y.E.et al.
2014). HySpex hyperspectral data have been widely
used by researchers to study porphyry-type deposits. For
example, Barger et al. 2003 employed hyperspectral data
to map mineral alteration associated with concealed
porphyry copper deposits in the northern Patagonia
Mountains of Arizona. According to Kokaly et al. 2017,
HySpex hyperspectral imaging is particularly suitable
for identifying porphyry copper-related alteration and
mineralized rocks. The large spatial extent of alteration
systems has also made porphyry copper deposits a key
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target for spaceborne hyperspectral remote sensing
applications (Bedini, E.2017).

Results from previous studies confirm the presence
of alteration mineral outcrops in various regions globally,
including our study area (Erickson, R.L.1982). Among
these outcrops, this study focuses on selected altered
minerals such as chlorite and jarosite, which are
associated with porphyry copper deposits, to enable
more effective evaluation using hyperspectral techniques
and classification methods (Murphy, R.J et al. 2012).

In this study, we employed an ultra-low altitude
detection platform equipped with HySpex cameras,
which provide sub-meter-level spatial resolution (Adao,
T et al. 2017). The system integrates a visible-near-
infrared (VNIR) sensor and a short-wave infrared
(SWIR) sensor. Field-collected data were preprocessed,
and subsequent processing included Minimum Noise
Fraction (MNF) transformation to reduce noise,
minimize computational demands, and address the
inherent dimensionality of the image data (Boardman,
Jet al, 1994). This process facilitates the grouping of
pixels into distinct classes within hyperspectral images
(Chehdi, K et al.2014). The selected classes were
compared with Analytical Spectral Devices (ASD)
spectra and the United States Geological Survey (USGS)
spectral library, after which they were exported as
Region of Interest (ROI) files for -classification
(Boardman, J.et al.1994; Chehdi, K.et al.2014;
Boardman, J.W.et al.1993). Finally, two classification
methods—Spectral Angle Mapper (SAM) and Support
Vector Machine (SVM)—were tested and validated
using ground-truth data obtained during field
observations (Bishop, C.A.et al.2011;). The most
accurate results were applied to classify images,
enabling the identification of pixels representing altered
minerals (Murphy, R.J.et al.2017). The selection of an
appropriate classification algorithm is paramount for
accurately translating spectral information into a mineral
map. In this context, the Support Vector Machine (SVM)
classifier offers distinct advantages for processing
hyperspectral data like that from HySpex. SVM is
particularly effective in high-dimensional feature spaces,
which are inherent to hyperspectral datasets with their
hundreds of contiguous spectral bands. It operates by
finding the optimal hyperplane that maximizes the
margin between different mineral classes, making it
robust to overfitting and capable of handling complex,
non-linear relationships even when the number of
training samples is limited. This resilience to the "curse
of dimensionality" and its ability to generalize well from
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small, field-validated training data make SVM a
powerful and suitable choice for discriminating between

2. Geology of the Yudai Deposits and
Sampling
2.1. Geology of the study area

The Eastern Tianshan is situated south of the
Junggar Basin and occupies the middle part of the
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the subtle spectral signatures of alteration minerals such
as chlorite and jarosite.

Southern Tianshan Suture Belt within the southern
Central Asian Orogenic Belt (Fig.1a). It covers an area
of around 60,000 km? in the northeastern part of
Xinjiang Province, China (Xiao, W.-J.et al.2004; Xiao,
W.et al.2010). The Kalatage area is juxtaposed with the
Tufan region to the west and the Harlik-Dananhu Arc to
the east (Fig.1b) (Mao, Q.2014).
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Fig. 1 (a) Schematic tectonic map of Central Asia and adjac

ent regions, highlighting the Eastern Tianshan (modified

after XBGMR, 1993; Xiao et al., 2004) (b) Schematic geological map of the Eastern Tianshan (Modified after Xiao et

al., 2004a). (c) Regional geological map of the Kalatage area

It comprises the Ordovician-Silurian Daliugou,
Silurian Hongliuxia, Devonian Dananhu, Carboniferous
Qishan, and Permian Arbasay formation (Fig.1c). The
Ordovician-Silurian Daliugou Formation consists of
basaltic andesite and tuff at the base, overlain by dacitic
lava at the top. Mineralization predominantly occurs at
the contact zones between the tuff and either dacite or
volcanic breccia. The Hongliuxia Formation includes
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(after Deng et.al. 2016a)

sandstone and siltstone at the base, succeeded by
calcareous siltstone, fine-grained sandstone, and
limestone. The Dananhu Formation unconformably
overlies the Hongliuxia Formation and is composed of
pyroclastics, limestone, and mafic-intermediate volcanic
rocks. The Qishan Formation comprises mafic rocks,
felsic pyroclastic rocks, and lava. The Arbasay
Formation consists of sandstone, diamictites, and mafic
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to felsic volcanic and pyroclastic rocks. The intrusive
rocks in the study area are composed of Caledonian
granitoids and Hercynian porphyry, which are located in
the southeastern part of the Kalatage area (Deng, X.-
H.2016; Deng, X.-H.et al.2018; Deng, X.H.et al.2018).

The Yudai copper deposits are situated in the
western part of the Kalatage area, south of the Kabei
Fault (Fig. 2a). The deposits primarily consist of
intrusive, volcanic (effusive), and sedimentary rocks.
The mineralization is hosted within porphyritic quartz
diorite, which intrudes into Ordovician andesite of the
Daliugou Formation. Volcanic rocks, intrusive rocks,
mineralization zones, and alteration zones are fault-
controlled and predominantly occur in the eastern,
northwestern, and northern parts of the region (Chen,
L.et al 2017). Various intrusive rocks, including rhyolite
porphyry, porphyritic quartz diorite, and gabbro, form
stocks and dike intrusions in the western part of the area,
covering approximately 5 km? These intrusions are
spatially and temporally associated with mineralization.
The Yudai district’s mineralization exhibits lenticular,
vein-type, and disseminated textures within the
porphyritic quartz diorite. The mineral assemblage
comprises pyrite-chalcopyrite-magnesite (£chalcocite-
molybdenite), with gangue minerals such as chlorite,
quartz, and sericite, along with minor amounts of
epidote and carbonate.
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Fig. 2 (a) Geological sketch map of the Yudai copper
deposits (after Lei Chen et al., 2017). (b) HySpex aerial
image with sample location.
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The hydrothermal alteration is characterized by
potassic alteration (K-feldspar and biotite), silicification,
chlorite, epidote, sericite, and carbonate, which can be
identified using remote sensing methods. The study
area’s landform comprises low hills, wide valleys, and
quasi-plain terrain (Fig.2b). The general ground
elevation ranges from 500-600 meters, with a maximum
elevation of 693 meters and a relative relief of tens of
meters. The area experiences a continental arid climate
with extreme temperature differences between dry and
wet seasons. There are no permanent rivers; water
sources rely solely on atmospheric precipitation (rain
and snow), which evaporates rapidly, resulting in sparse
vegetation (Fricke, K.2018; Chen, D.et al.2018).

2.2. Sampling

Sample collection was performed through a
comparative study, and higher-quality sample data were
selected to extract alteration information for the study
area (Bishop, C.A.et al.2011). Based on the alteration
anomaly map, the workflow included the following
steps: 1) Extraction of alteration information from
remote sensing imagery. 2) Planning of fieldwork routes
for sample collection. 3) Determination of specific
sampling locations (Fig. 2b). Description of the
collected samples are provided in Table 1.

3. Data Analysis
3.1. HySpex dataset

During data acquisition, a powered delta wing
(Airborne  XT91) equipped with an imaging
spectrometer, POS (Position and Orientation System),
and a control system was used to collect data during
low-altitude flights over the study area (Fig. 3a). The
powered delta wing is a self-powered, high-flying
aircraft characterized by its lightweight, simple, and
rugged design. For takeoff and landing, the required
runway distance ranged from 50-150 meters, while
operational parameters included an altitude range of 50—
4,000 meters and a cruising speed of 45-110 km/h. The
imaging spectrometer integrated into the delta wing is a
push-broom-type linear array hyperspectral HySpex
spectrometer, developed by the Norwegian company
NEO (Norsk Elektro Optikk). The HySpex spectrometer
features: ground and airborne versatility, minimal and
identical point spread function (PSF) across the entire
field of view and spectral range, optimal alignment of
PSF and pixel size, low stray light, reduced smile effect
and spectral keystone effect. The HySpex linear array
CCDs include 216 bands in the visible-near-infrared
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(VNIR-1024) module (spectral range: 400-1000 nm,

spectral resolution: 2.7 nm) and 288 bands in the short-
wave infrared (SWIR-384i) module (spectral range:
950-2500 nm, spectral resolution: 5.4 nm) (Fig. 3b).
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Key parameters of the spectrometers are summarized in
Table 2.

Table 1. Sample description.

N2 Sample Latitude  Longitude Lithological description
number
1 HT- 11 (A)  42°%41'51"  91%4520" Invaded igneous rock package
2 17QP2-1 (B) 42°41'35" 91°45'20" Speckled feldspar, fine grain, basic rock, partially
exposed surface chlorite
3 17QP2-2 (C) 42°%41'31" 91%45'19" Brown, containing a lot of feldspars, basic rock
4 17QP 3-3 (D) 42°41'40" 91%44'12" Chlorite
5 17QP 3-4 (E)  42%41'47" 91%44'34" Limonite mineralization, covered with a small
amount of gravel, containing a small amount of
jarosite
6 HT-10 (F)  42%42'19"  91%44'48" The jarosite is covered with shallow soil and the
exposed red yellow potash
7 17QP 3-6 (G)  42°42'42"  91%45'70" Limonite mineralization, surface red limonite
mineralization. Bottom yellow potash, including
potash feldspar, calcite
8 17JY-3 (H)  42%42'11" 91%44'31" Altered gabbro
9 17QP3-5(1)  42°70'09" 91075'13" Ground gravel

Fig. 3 HySpex hyperspectral platform: (a) delta wing (Airborne XT91) and (b) HySpex cameras.

The research team conducted fieldwork in the
Kalatage area, designing a 5 km flight path for the delta
wing. During flights, the aircraft must avoid exposure to
air currents, which can cause momentary tilting and lead
to hyperspectral image distortion. Fortunately, ideal
weather conditions during the survey minimized air
currents, reducing operational challenges. However,

Vatanbekov et al, 2025

even minor turbulence or misalignment necessitated
geometric correction of the data. To ensure seamless
hyperspectral data stitching (avoiding gaps or quality
degradation), the flight parameters included: 40% image
overlap, flight altitude: 1,000 meters, spatial resolution:
~1 m. As per Equation 2.1, the scan width per flight
route was 286.7 m, requiring a 400 m route spacing to
Page 5
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meet overlap and altitude requirements. The raw
hyperspectral data collected by the team consisted of
digital number (DN) values without inherent physical
meaning. These data lacked a coordinate system and
exhibited geometric distortion and atmospheric
interference, necessitating preprocessing steps:

1) Radiometric calibration (using HySpex RAD
software to convert DN values to radiometric
units),

2) Radiometric calibration (using HySpex RAD
software to convert DN values to radiometric
units),

3) Geometric correction (aligning spatial features),

4) Atmospheric correction (removing atmospheric
effects).

Table 2. HySpex spectrometer parameters.

IHHE LK
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Sensor name VNIR-1024 SWIR-384i
Imaging Push sweep Push sweep
Spectral 2.8 nm 6.5 nm
sampling

Spectral range 400 — 1000 nm 950 — 2500 nm

Spectral bands 216 288

Spatial pixels 1024 384

Camera Size 31.5*%8.4*%13.8 39.0*12.0*17.5

(cm)
Second-order Built-in Built-in
suppression
Frame rate 3501fps 450fps
Lateral field of 16° 16°
IFOV 0.28mrad/0.56mrad 0.16mrad/0.32mrad
Types of Si CCD, 2048 x HgCdTe, 384 x 288
Digitizing 12 bit 16 bit

Power 6W 36W

Following basic format conversion, geometric
calibration was performed using PARGE software
(developed by the Remote Sensing Laboratory at the
University of Zurich). Topographic correction was
applied by integrating position and orientation data
(POS) recorded by NovAtel’s SPAN-CPT instrument.
Atmospheric correction was conducted using ATCOR
software (Lenhard, K.et al.2014; Guo, J.et al.2014).
Additionally, image registration was performed using
the registration and mosaic tools in ENVI 5.1 Classic,
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while masking and other post-processing steps were
carried out in ArcGIS and CoreIDRAW. To extract
endmember pixels from the HySpex hyperspectral data,
the workflow involved: 1) Dimensionality reduction of
the raw data to isolate key spectral features. 2) Noise
reduction using the Minimum Noise Fraction (MNF)
method. 3) Identification of pure spectral signatures via
the Pixel Purity Index (PPI). 4)Validation and
refinement of endmembers using an n-dimensional
visualizer to ensure optimal spectral separation (Clark,
R.N.1999; Bishop, J.L.et al.2005).

3.2. Spectral Angel Mapper Method

The Spectral Angle Mapper (SAM) is a method
used to directly compare the spectral reflectance of an
image pixel with a reference spectrum or endmember. It
processes spectral vectors by calculating the spectral
angle between them[33]. The SAM algorithm is
insensitive to illumination variations, as it relies solely
on the direction of the spectral vector rather than its
magnitude. This method is widely applied for
identifying lithology and mineralogy and performs

effectively in homogeneous regions (Kruse, F.et
al.1993).
0 = cos™! |[—Z=LTL | g [O,%], (1)
T Tt

The angle 6 between the spectral vectors t and r is
zero (0 = 0) when the vectors are identical. When t and r
are perpendicular (8 = 7/2), the spectral angle reaches its
maximum. Here, t and r are defined as:t = (1, t2, t, ...,
ta), T = (11, I2, T3, ..., I), Where the components represent
reflectance values across n spectral bands.

3.3. Support Vector Machine

The Support Vector Machine (SVM) was
introduced in machine learning theory for solving
regression and classification problems and has been
widely applied to multispectral data (Farag, A.A.et
al.2009) and hyperspectral image classification
(Gualtieri, J.A.2009; Melgani, F et al.2009; Lennon,
M.et al.2012). SVM can also be generalized to compute
nonlinear decision surfaces. The method involves
projecting data into a higher-dimensional space, where
the data becomes linearly separable. To enable nonlinear
classification, SVM employs kernel machine theory,
which maps input vectors into a high-dimensional
feature space. In this transformed space, the data points
achieve linear separability (Murphy, R.J.2012).
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The most popular kernel functions are the dth-
degree polynomial kernel:

k(x, x') =1+ (x,x))4 2)
and the Radial Basis Function (RBF):
. e
k(x, X ) = exp (— 7) S 3)

A first-order polynomial kernel (d=1) corresponds
to a linear kernel. The Radial Basis Function (RBF)
kernel maps input data vectors to an infinite-dimensional
feature space (Boser, B.et al.1992; Cortes, C.et al.1995).

3.4. Technical route of this research

Finally, an effective model for altered mineral
extraction can be established through comparative
analysis. The methodology (or workflow) of this
research is summarized in Fig. 4, which includes the
following steps: data selection, spectral feature analysis,
characteristic mineral identification, mineral
classification, field validation, and mineral mapping.

3.5. ASD spectral analyses

We established nine checkpoints in our study area
to collect rock samples for analysis. Our focus, however,
was on two types of alteration zones: chlorite and
jarosite. Samples from these zones were collected in the
field and investigated in the laboratory using ASD
spectral analyses. Descriptions and photographs of the
samples are provided in Fig. 5 and Table 1.

Data selection

i Remote sensing Geological map
! O 8
| Preprocessing data Geological setting

Analysis spectral feature

=

Characteristic minerals
o

Mineral classification

SVM SAM
BT B
1.Assigning binary class

labels 1.Segmentation map
2.Finding kernel

3.0ptimaization solution 2.Pixel-wise classification
algorithm map |
4.Evalution classifier |

Validation in field
£ 3

Mineral mapping
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Fig. 4: Flowchart of the HySpex hyperspectral mineral
mapping methodology.

The spectra of the samples were measured using a
FieldSpec3 spectroradiometer (Analytical Spectral
Device). Technical specifications and details of the
experimental apparatus are provided in Table 3. The
experimental procedure followed the ViewSpecPro user
manual. The spectrometer was connected to a
Windows® 7 64-bit laptop (instrument controller), and a
predefined measurement schedule was configured. The
spectral acquisition software was used to record and
process the data. The sampling interval was 1.4 pum
across the 3.50-1.00 um wavelength range and 2 pm
across the 1.00-2.50 pum wavelength range. Rock
samples were measured at 10 random locations, and an
average representative spectrum for each sample was
obtained.

Furthermore, the samples were measured under
artificial light (using an accessory light source) rather
than sunlight. Prior to data collection, a white reference
test was conducted using the RS3™ software (ASD Inc.),
which automatically calibrates the system. The derived
datasets were then converted into text files via
ViewSpecPro and RS3 software. These text files were
subsequently imported and processed in ENVI 5.1
software.

Fig. 5 Shows photos of the rock samples: (a) 17QP 3-3
(D) and (b) HT-10 (F). Descriptions of the samples are
provided in Table 1.

4. 4. Results
4.1. End-member spectrum

For subsequent processing, we applied the
Minimum Noise Fraction (MNF) transformation method
to segregate noise, reduce computational requirements,
and lower the inherent dimensionality of the image data.
The n-dimensional visualizer was used for interactive
selection of endmembers in n-space, linked to the MNF
transformation. Pixel Purity Index (PPI) tools were
employed to identify the purest pixels and most extreme
spectral responses in the dataset, enabling the
classification of pixel groups into distinct classes within
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the hyperspectral image data.

The primary target minerals extracted in this study
are chlorite and jarosite. Chlorite, a phyllosilicate
mineral, exhibits characteristic absorption features in the
SWIR region (around 2.25-2.35 um) due to vibrational
processes of Mg-OH and Fe-OH bonds. Jarosite, a ferric
sulfate mineral, shows distinct absorption features in the

IHHE LK
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VNIR region (centered near 0.43 um, 0.65 um, and 0.92
um) caused by electronic transitions of ferric ions (Fe*™).
Figure 6 presents a comparative analysis between the
endmember spectra extracted from the HySpex data and
the corresponding standard spectra from the USGS
spectral library. The results confirm a significant
statistical ~correlation between the image-derived
endmembers and the reference spectra (p < 0.01).

Table 3. Analytical Spectral Device parameters.

Specification Parameter
Wavelength range 350-2500 nm
Resolution 3nm @ 700 nm /6 nm @ 1400-2100 nm
VNIR: 5000:1(0.02%) nm
Stray light
NIR: 10000:1 (0.01%) nm
Channels 2151
VNIR detector (350-1000nm) 512 element silicon array

SWIR 1 & 2 detectors

(1001-1800 nm) & (1801-2500 nm) Graded Index In GaAs Photodiode, TE

Cooled
Dimensions HxWxD)12.7x36.8x29.2cm (5x 14.5x 11.5 in)
:Elzgg?ﬁ —— Class 1 §i=gg?2 Class 2
- —— USGS

reflectance

(a)

L O L O N T I I O O, O I O =

Cla g e Lo Le g g Laweslgaalaaaldy 1
1.0 12 14 16 18 20 22 24
Wavelength(um)

reflectance

(b)]

0.9

0.0k ‘
0.5

06 07 08
Wavelength(um)

Fig. 6 Comparative analysis between the spectra of the dominant minerals in the HySpex data and the USGS spectral
library. The primary minerals identified are (a) chlorite and (b) jarosite.

Class 1 (Chlorite): The spectrum extracted from the
HySpex SWIR-384i sensor (Fig. 6a) shows a strong
correlation (R*> = 0.795) with the USGS chlorite
reference. The overall shape and the position of the key
absorption feature near 2.25-2.35 um are well-matched.
However, the absolute reflectance values of the image
endmember are consistently higher than the library
spectrum, with an average difference of 0.28. This
systematic offset is common in remote sensing and can
be attributed to factors like surface roughness, grain size

Vatanbekov et al, 2025

differences, or residual effects from atmospheric
correction. Crucially, the spectral shape in the
diagnostically important 1.80-2.50 pum range is very
similar, confirming the successful identification of
chlorite. Class 2 (Jarosite): The spectrum extracted from
the HySpex VNIR-1024 sensor (Fig. 6b) shows an even
stronger correlation (R? = 0.852) with the USGS jarosite
reference. The absorption features related to Fe** are
clearly identified and aligned. Although the image
endmember also has a higher absolute reflectance
Page 8
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(average difference of 0.19), its overall shape and the
depth of the diagnostic absorption features correspond
very closely to the library standard. This high degree of
similarity, particularly in the 0.40—1.00 um range where
jarosite has its key spectral signatures, provides high
confidence in the identification. In summary, Class 1 is
identified as Chlorite based on its SWIR spectral
characteristics, and Class 2 is identified as Jarosite based
on its VNIR ferric iron features. The consistent offset in
absolute reflectance does not detract from the mineral
identification, which relies primarily on the shape and
position of the absorption features, both of which show
excellent agreement with the reference standards.Overall,
1.0
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the spectral data exhibited a significant reduction in
correlation. To further analyze the absorption
characteristic positions of the minerals, both the
reference spectra and endmember spectra were
processed using continuum removal (Fig. 7). The
endmember spectra align closely with the characteristic
absorption positions of the reference spectra across both
spectral ranges. Notably, Class 1 displays a broad
absorption feature in the 1.85-2.50 um wavelength
range.

The hydroxyl groups in the shortwave infrared
(SWIR) range show strong spectral similarity to chlorite,

1.0 F =1 5

0.8
06 i
0.4 | — Jarosite of testing spectra e
I — Jarosite of USGS mineral library (b) J
05 06 07 08 09
Wavelength (um)

Fig. 7 Continuum-removed spectra from the USGS Spectral Library and HySpex endmember data: (a) Chlorite, (b)

Jarosite.

likely due to absorption features associated with
carbonate bonding (Fig. 7a). The characteristic
absorption valley of chlorite occurs at approximately
2.320 um, consistent with the spectral analysis. Class 1
exhibits three deep absorption valleys in the 1.250-
1.600 um range, with primary absorption features at
1.100 pum, 1.450 pum, and 2.250 pm. Secondary
absorption valleys are observed in the 1.780-2.100 pm
range, while the water absorption feature is centered in
the 1.250-1.500 pm range. A third absorption valley
spans 2.200-2.500 um, displaying two distinct peaks:
the first corresponds to the Al-OH group, and the second
aligns with the Mg-OH absorption position. Class 2,
resembling jarosite, shows broad absorption in the
0.760-1.000 pm wavelength range, attributed to OH
groups (Fig. 7b). Additionally, two absorption valleys
are present in the 0.400—0.560 um range: a sharp valley
at 0.440 um and a broader, more scattered valley near
0.490 um. The endmember spectra of both minerals
exhibit characteristic absorption positions in the short-
wavelength (SWIR) and visible-near infrared (VNIR)

ranges, demonstrating strong agreement with the

Vatanbekov et al, 2025

corresponding USGS spectral library reference spectra.

4.2. ASD Spectral Analysis and Validation

The reference tests were analyzed using a spectral
analysis procedure in ENVI 5.1 software. Results were
compared through visual inspection of laboratory
spectra from field samples and the USGS spectral
library. Figure 8 illustrates the spectral analysis of rock
samples, which exhibited minor absorption features. The
samples display distinctive absorption features with
similar spectral shapes, though their spectra are not
identical. For chlorite, spectral absorption peaks were
compared with the USGS library, revealing pronounced
absorption in the 2.252-2.350 um range due to Al-OH
and Fe/Mg-OH bonding. Additional absorption features
include a peak at 1.940 um (attributed to OH™ ions) and
1.410 um (associated with water absorption) (Fig. 8a).

The jarosite spectrum shows a strong Fe**
absorption feature at 0.910 um, a narrow feature at
0.430 pm, and prominent absorption valleys near 1.470
pm, 1.945 pm, and 2.350 pm (Fig. 8b). Data from the
HySpex imagery and ASD field spectrometer align well
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with the USGS spectral library, confirming consistency
in spectral signatures.
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4.3. Classification of the spectral libraries
Spectral Angle Mapper (SAM) classification was
performed using ENVI 5.1 software.
Ol.a_!"'l"'r"'l'r
(b)
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Fig. 8 Comparison of Analytical Spectral Devices (ASD) spectrometer data with the USGS spectral library: (a)

Chlorite; (b) Jarosite.

The maximum angle threshold (in radians) was set as the
input parameter, defining the maximum acceptable
spectral angle between the training spectrum and pixel
vectors. After testing multiple angle thresholds for each
class, a single angle threshold of 0.5 radians was
selected for optimal classification. At 0.2 radians, the
classification left many pixels unclassified due to the
overly restrictive threshold, while 0.4 radians resulted in
mineral misclassification. The 0.5-radian threshold
provided the most suitable balance, minimizing
unclassified pixels while reducing errors, and was
therefore applied in the final classification.

Support Vector Machine (SVM) classification was
performed using SVM software with a Gaussian radial
basis function (RBF) kernel. For parameterization,
feature values were scaled to a range of 0-I.
Hyperparameters y (gamma) and C were tested across a
predefined range of values to optimize classification
performance. Optimal y and C values for the RBF kernel
were determined through five-fold cross-validation. The
model with the smallest y value and highest cross-
validation accuracy was selected, as y controls the kernel

width. Smaller y values increase the influence radius of

support vectors (reducing overfitting), while higher y
values improve training accuracy by tightly fitting the
model to the training data. Final parameters of y = 274
and C = 225 were used for classification, balancing
generalization and accuracy.

The final comparison of the two classification
methods was conducted using the F-measure, which
combines precision and recall, and the kappa coefficient

Vatanbekov et al, 2025

of agreement (Crestani, F.et al.1998; Hudson, W.D.et
al.1987). The F-measure results indicated that the
Spectral Angle Mapper (SAM) performed most
effectively in classifying chlorite, while the kappa
coefficient demonstrated low sensitivity for jarosite
(Table 4). These findings have two key implications for
SAM-based classification of hyperspectral imagery in
mine faces:

1) Variability in optimal spectral angle:
Differences in optimal angular thresholds
between spectral libraries and rock types
suggest that a single angular threshold cannot
be universally applied to classify all rock types
under varying illumination conditions.

2) Reference spectrum limitations: Inconsistent
classification performance across reference
spectra implies that no single reference
spectrum can serve as a "typical" representative
for any rock type.

To classify the spectral libraries, SVMs were
applied to each rock type using a one-against-all
approach without employing the winner-takes-all
decision. The parameters for each kernel—polynomial
and RBF—were optimized to maximize the averaged
performance of the one-against-all binary classifiers. For
the polynomial kernel, the first-degree polynomial
demonstrated the best overall performance (Table 4).
Overall, SVM significantly outperformed SAM in
classifying rocks across all test libraries.
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(58.03% accuracy) and the corresponding Kappa
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coefficient index of 0.50 (Table 5).The analysis of
alteration distribution

Table 4 Classification Performance of SAM and SVM

Rock type F-measure Kappa
SAM SVM SAM SVM
Chlorite 0.644® 0.975M 0.49® 0.68(1)
Jarosite 0.567® 0.8547 0.51® 0.60@
Overall 0.605 0.905 0.50 0.64
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Fig. 9 Spectral Angle Mapper (SAM) alteration extraction results.

revealed that most jarosite areas were distributed around
the trenches, exhibiting a linear trend along their paths.
Chlorites were predominantly located in the hills
northeast of the trenches, with the remainder scattered in
the surrounding hills.

The SVM classification achieved 69.25% accuracy
with a Kappa index of 0.64 (Fig. 10, Table 5). A
manually created slope mask was applied to correct
inclination errors, which improved classification
accuracy. The key distinction between SVM and SAM
lies in their handling of the original slope data. Overall
classification accuracies improved by 4.3% for SAM (to
59.57%) and reached 69.25% for SVM (Table 4).

4.4. Verification Analysis

After extracting the alteration zones, field
verification of the results is required to ensure their
credibility. To evaluate the reliability of the alteration
extraction, we collected nine samples from nine
checkpoints (Fig. 11). Points D, E, and F are located in
the concentrated alteration area identified by both SVM
and SAM. In contrast, Points A and I are situated in
areas where the two types of alteration were not

Vatanbekov et al, 2025

extracted due to coverage by aeolian and slope gravels.
Points B, C, G, and H are located within the alteration
distribution zones.

Representative verification points and a non-
alteration area were selected for each of the two
alteration zones within the study area for field
verification, as shown in Fig. 12. In photos a, ¢, and d,
the hills in the southwestern part of the study area
exhibit chlorite chemical indices in their upper sections,
with weathered rocks visible around the trenches. These
observations align with the alteration extraction results.
However, in photos b and i, no alteration is present due
to coverage by aeolian and slope gravels, which
corroborates our findings. Photo e reveals limonite and
jarosite mineralization (Fig. 12 e), though the alteration
extraction along the trench does not indicate a uniform
distribution of jarosite. Instead, scattered jarosite
distribution was observed in certain areas (Fig. 12 f), as
reflected in the alteration extraction classification map
(Fig. 10). During field observations, additional altered
rocks, such as limonite and gabbro, were documented
(Fig. 12 g, h).
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The results of altered mineral extraction were method yielded dispersed distributions, which were also
integrated with field verification. The SVM method consistent with field data. In areas of alteration and
produced concentrated distributions of altered minerals, concentration, altered mineral distributions derived from
supported by field observations. Similarly, the SAM these methods align with field-observed patterns.

Table 5. Comparison methods accuracies.

Classification Accuracy (%) Kappa-Coefficient
SAM 58.48 0.50
SAM with original slope 58.03 0.49
SAM with manual slope 59.06 0.50
SVM 69.25 0.64
SVM with original slope 69.45 0.60
SVM with manual slope 70.02 0.67
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Fig. 10 Support Vector Machine (SVM) alteration extraction results.
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Fig. 11 The field verification checkpoints.
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Fig. 12 Photos of the verification check points from
Yudai Kalatage, Xinjiang (China): (a) HT-11 (b) 17QP
2-1 (e) 17QP 2-2 (d) 17QP 3-3 (e) 17QP 3-4 (f) HT-10
(g) 17QP 3-6 (h) 17 JY-3 (i) 17QP 3-5 description of the
samples are given in Table 1.

5. Discussion

The purpose of this study was to implement a low-
altitude hyperspectral method for extracting alteration
information using an ultra-low altitude, high-precision
rapid detection technology platform. Airborne, field, and
laboratory measurements produced mineral maps
identifying predominant spectral mineral classes,
specifically chlorite and jarosite. The identification of
these minerals was supported by Analytical Spectral
Devices (ASD) data, confirming consistency with the
USGS spectral library (Fig. 8). Through comparative
analysis, higher-quality sample datasets were selected to

extract alteration information in the study area. Guo et al.

2019 previously studied HySpex hyperspectral mineral
mapping in the Hami area, focusing on spectrally
predominant iron-stained altered minerals such as
limonite, jarosite, and goethite. Their results displayed
similarity across three levels of data collection. In this
study, reference spectra were interactively selected from
image data at each collection level to define mineral
classes. Mineral mapping prioritized iron-bearing
minerals with diagnostic absorption features in the
VNIR and SWIR wavelength ranges (400-2500 nm).
The study area’s surface, affected by weathering,

Vatanbekov et al, 2025
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comprises ground gravel, altered gabbro, feldspar,
chlorite, limonite, and jarosite, as documented by
airborne HySpex imaging and field observations (Fig.
12, Table 1). HySpex hyperspectral data were enhanced
using Minimum Noise Fraction (MNF) transformation
to reduce noise and coupled with the Pixel Purity Index
(PPI) to extract endmembers of mineral classes in n-
dimensional space. Spectral alignment was achieved by
comparing wavelength positions between the ASD and
USGS spectral libraries (Figs. 6 and 8). Recognizing and
quantifying minor spectral differences between
spectrometers enabled data alignment and comparison of
absorption feature positions across instruments.

SVM  consistently outperformed SAM in
classifying library spectra of rocks, demonstrating its
superiority over other classification methods (e.g.,
(Foody, G.M.et al.2004; Huang, C.et al.2002)). For
SAM classification, the optimal angular threshold varied
across test libraries and performance metrics.
Consequently, multiple angle thresholds were tested,
and 0.5 radians was selected as the most suitable value
for classification. The performance of the SVM method
also varied across test libraries. To classify the spectral
libraries, parameters for each kernel (polynomial and
RBF) were optimized to maximize the average
performance across all binary classes. After five-fold
cross-validation, the optimal parameters for SVM
classification were determined as y=2"'* and C=225.
These parameters were subsequently applied,
confirming that SVM significantly outperformed SAM
in classifying rocks across all test libraries (Table 4).

Despite the overall success of the methodology,
this study has several limitations. Firstly, the high spatial
resolution (~1 m) of the HySpex data, while
advantageous for detailed mapping, results in a large
number of mixed pixels at mineral boundaries and in
areas with intimate mineralization, which can challenge
the accurate extraction of pure endmembers. Secondly,
the spectral classification, particularly the SVM, is
sensitive to the quality of the input training data. The
selection of optimal parameters (y and C) is data-
specific, and the process, though rigorous, requires
significant computational time and expertise to avoid
overfitting. Furthermore, the presence of widespread
salt-alkali crust and vegetation cover in parts of the
study area can mask the underlying mineralogical
signatures, leading to potential misclassification or an
underestimation of alteration extent. These factors
represent inherent challenges in applying hyperspectral
remote sensing in complex natural environments.
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Following the on-site investigation, we observed
extensive jarosite exposure around the trench and in
spatially extensive mono-mineralized zones. A small
amount of chlorite was identified on the hilltop near the
trench, while the remaining area was predominantly
covered by a thick salt-alkali crust with minimal
alteration. The altered mineral extraction results,
combined with field verification, reveal that the
distributions of altered minerals extracted using the
Support Vector Machine (SVM) method are more
concentrated and spatially coherent, whereas those
derived from the Spectral Angle Mapper (SAM) are
more dispersed. In alteration zones, the altered mineral
distributions identified by both methods align with field-
observed alteration patterns. The results demonstrate
that SVM classification is more accurate and sensitive
than SAM for identifying metamorphic minerals.
Additionally, SVM-based alteration extraction showed
stronger agreement with field verification. These
findings are consistent with studies by Murphy et al.
2012 and Huang et al. 2002, which reported SVM’s
superior performance over SAM in classifying rock
spectra acquired via low-altitude detection. This further
supports SVM as a robust method for classifying
alteration zones. Overall, SVM achieves higher accuracy
and sensitivity in recognizing altered minerals compared
to SAM.

The results of this study demonstrate that the ultra-
low altitude HySpex hyperspectral platform can
effectively detect altered minerals and be used to
establish a qualitative relationship between spectral
signatures and mineral element content. In subsequent
research, we plan to apply this technology to large-scale
metallogenic belt surveys to identify rock types and their
mineral composition, while also developing strategies to
mitigate the limitations identified herein, such as
employing spectral unmixing techniques to address
mixed pixels.

6. Conclusions

HySpex hyperspectral data, acquired from a super-
low altitude platform, were used to identify alteration
zones and map minerals by analyzing spectral
wavelengths. Endmember spectra derived from the
images demonstrated strong similarity to the USGS
spectral library, supported by accuracy reference spectra
and quantitative descriptions. The ASD mineral analyses
showed good agreement with the HySpex hyperspectral
results, further validating the data. Altered minerals
were extracted using the Spectral Angle Mapper (SAM)
and Support Vector Machine (SVM) methods, both of
Vatanbekov et al, 2025
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which performed effectively in screening field
backgrounds. Field verification revealed an agreement
accuracy of 69.25% for SVM, indicating robust
performance. While SAM also successfully identified
mineral alterations, its accuracy was lower at 59.57%,
reflecting reduced reliability under field validation.

In  summary, super-low altitude HySpex
hyperspectral detection platforms enable the acquisition
of continuous, high-resolution spectral target curves at
sub-meter spatial resolution. This technology provides
critical technical support for studying quantitative and
semi-quantitative relationships between targets and is
highly effective for mineral deposit prospecting.
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